
Mikhail Lavrov

Start Doing Graph Theory
Part III: Trees

available online at https://vertex.degree/

?

?

?

https://vertex.degree/

Contents

About this document 3

9 Trees and spanning trees 4
9.1 Spanning trees . 4
9.2 Bridges . 7
9.3 Properties of trees . 9
9.4 Minimum-cost spanning trees . 10
9.5 Practice problems . 13

10 Properties of trees 15
10.1 A square garden . 15
10.2 Counting edges in trees . 17
10.3 From trees to forests . 19
10.4 Leaves in trees . 20
10.5 Induction on trees . 22
10.6 Practice problems . 25

11 Cayley’s formula 28
11.1 How to count graphs . 28
11.2 Trees and deletion sequences . 31
11.3 Prüfer codes . 33
11.4 Working with Prüfer codes . 36
11.5 Counting unlabeled trees . 38
11.6 Practice problems . 40

Bibliography 42

2

About this document

This is Part III of Start Doing Graph Theory. It’s about trees: graphs which are minimally
connected. This concept is at the root of every branch of graph theory, and I’m sure that
reading the fruit of my labors will leaf you amazed at how useful trees can be.

Right now, only parts I through IV are ready. When the book is finished, I plan to provide a
variety of ways to read it: a single PDF of the whole book, several smaller PDFs like this one,
and eventually an HTML version. For now, think of this document as a preview!

This document is licensed under a Creative Commons Attribution-ShareAlike 4.0 International
License: see https://creativecommons.org/licenses/by-sa/4.0/ for more information.

3

https://creativecommons.org/licenses/by-sa/4.0/

9 Trees and spanning trees

The purpose of this chapter

Trees are some of the most fundamental objects in graph theory. There’s no single big theorem
that makes them useful; instead, there are many small facts. Trees appear when analyzing
expression trees, or in computer science applications; they are useful in more advanced graph
theory when analyzing connected graphs; they appear surprisingly often in recreational math.
In this chapter, I want to motivate trees by introducing spanning trees, which is only one of
many possible motivations.

It is natural to follow up by considering the problem of finding minimum-cost spanning trees,
so I’ve included a section on that problem at the end of this chapter; though it is not crucial for
any content in future chapters, it is nice to cover, if possible. (Students coming from a discrete
math class might have already seen Prim’s algorithm or Kruskal’s algorithm; at the very least,
the algorithm in this chapter is different, providing some variety.)

I’ve also tried to include several diagrams of different trees, in particular the six in Figure 9.2.
Take a few moment to just look at these and get a feeling for what trees are like, to supplement
the mathematical properties that we will prove in this chapter and the next.

9.1 Spanning trees

What does it take to connect a graph?

We have seen many examples of connected graphs. For example, the cube graph, shown in
Figure 9.1a as a reminder, is connected.

But not all the edges of the cube graph are necessary to have a connected graph. For example,
we can remove all edges between the four vertices in the “top half” of the cube, and the result
is still connected, because those vertices can still get to each other through the bottom half.
The remaining graph, shown in Figure 9.1b, has only 8 edges.

(a) The cube graph (b) From 12 edges to 8 (c) From 8 edges to 7

Figure 9.1: What does it take to connect the vertices of a cube graph?

4

Figure 9.2: Spanning trees of the cube graph, Q3

Even that is not the best we can do. Remove any one of the edges in the bottom half, and the
result is still connected: the bottom half of the cube forms a path subgraph. This results in a
7-edge graph, shown in Figure 9.1c.

Finally, in this graph, we can check that none of the 7 edges remaining could be removed. This
is certain to be true of whatever graph ends up our final stopping point—because if it weren’t,
we would keep going. If we want to understand connected graphs, we would do well to start
with graphs that have this property. They have a special name:

Definition 9.1. A graph T is a tree if it is minimally connected: T is connected, but for every
edge e ∈ E(T), the subgraph T − e is no longer connected.

(Why a “tree”? The term first appears in an 1857 paper of Arthur Cayley [3], whom we will
meet again later on in our study of trees. Cayley’s trees were diagrams used to represent various
compositions of differential operators: diagrams which started from a root and branched out to
smaller, similar diagrams, in just the way a tree grows. Graph-theoretically, they had the same
structure as what we call a tree today.)

The graph in Figure 9.1c is a tree. Moreover, it is a spanning subgraph of the cube graph
we started with in Figure 9.1a: we did not delete any vertices, only edges. The combination
of these two terms seems like it’s nothing special, but I will give it the special distinction of a
numbered definition because it is by far the most common use of the word “spanning” in graph
theory.

Definition 9.2. A graph T is called a spanning tree of a graph G if T is a tree and also a
subgraph of G with V (T) = V (G).

It is natural to wonder whether some spanning trees are better or worse than others; after
all, we did not arrive at Figure 9.1c with any attempt to make good decisions, but only did
what is best in the moment. If you were to experiment different approaches to the cube graph,
you would find that all the spanning trees you get are isomorphic to one of the six trees in
Figure 9.2.

Question: Which of these trees has the fewest edges?

Answer: All six of them have 7 edges: in this case, anything we do must be equally
good. In the next chapter, we will see that this is not a coincidence.

So why should we care about trees and spanning trees? For one, there are many practical
applications, because spanning trees are exactly what you want if your goal is to connect a
graph as cheaply as possible. Imagine, for example, a transportation company whose network

5

spans an entire continent, but which has now fallen on hard times and needs to cut back. It
would like to offer as few routes as possible, but it does not want to separate two parts of the
country entirely. Under this circumstance, the transportation company’s optimal solution will
be a spanning tree of its old route network.

Spanning trees will also be useful for us theoretically, and the reason begins with the following
theorem:

Theorem 9.1. A graph G is connected if and only if it has a spanning tree.

Proof. Let G be any connected graph. To find a spanning tree T of G, we will delete edges of
G one at a time until we get a tree.

This can be done essentially any way we like. Suppose we have ended up at an intermediate
graph H (some spanning subgraph of G) and H has an edge e such that H−e is still connected.
Then just delete edge e and keep going. (If there are many options for e, pick any of them.)

Eventually, we stop: we can’t keep deleting edges forever, because G only has finitely many
edges. However, the only way this process can stop is when deleting any edge would disconnect
the remaining graph. That is exactly what it means to be a tree: we have arrived at a spanning
tree of G.

In the other direction, suppose G has a spanning tree T . Then any two vertices x, y of G are
also vertices of T , and T is connected, so there is an x− y walk in T . That walk is also an x− y
walk in G, because T is a subgraph of G. Therefore G is connected.

Question: Does anything about this theorem change for multigraphs?

Answer: No, and in fact, if we start with a multigraph, our very first step can
be to delete loops and extra copies of edges to make it a simple graph.
These deletions can never disconnect the graph.

The importance of Theorem 9.1 is that it tells us about a single object (a spanning tree) which
is enough to show that a graph is connected. Without it, working directly from the definition,
we would have to consider different pairs of vertices x, y in the graph, and find a walk x − y
between each of them.

This does not seem like a big deal at the moment, because to verify that a subgraph T is a
spanning tree, we need to check that it is connected, which has all the same difficulties. (Finding
x − y walks in T might be even harder than it was in the original graph G.) Later on, as we
learn more about trees, we will find ways to verify that T is a spanning tree which have nothing
to do with connectedness! Then, Theorem 9.1 will come into its full power.

A final use of spanning trees is for proving general results about connected graphs. If you have
a problem about connected graphs that only gets easier to solve when the graphs have more
edges, then you can begin by solving it in its hardest case: when the graph is a tree. If you do,
Theorem 9.1 will immediately give you a general solution, by applying your specific solution to
the spanning tree of a general connected graph.

6

a

b

c
d

e

f

g h

i

j

k

l m

n

Figure 9.3: Which edges in this graph are bridges?

9.2 Bridges

Before we attain these promised powers, we need to learn much more about trees. Fortunately,
there are lots of things to learn.

To begin with, let’s take another look at the way we found a spanning tree in the proof of
Theorem 9.1. We kept deleting edges if deleting them would not disconnect the graph, until
there were no more edges left that we could delete. We can give a name to the type of edge
that is left, as a prelude to studying such edges more thoroughly:

Definition 9.3. In a connected graph G, an edge e is called a bridge if G− e is not connected.

As intuition for this name, you should imagine a long chain of islands like the Florida Keys,
connected to the mainland only by a single bridge (the Overseas Highway, in the case of Florida).
If anything happened to the bridge, then the islands would only be accessible by water.

Question: If G is not connected, would you want to call some edges of G bridges
under any circumstances?

Answer: Opinions vary, but certainly you would not want to keep the same con-
dition “G − e is not connected”, because then every edge would be a
tree. The most natural generalization is to say that a bridge is an edge e
such that G− e has more connected components than G.

Question: In the graph shown in Figure 9.3, which edges are bridges?

Answer: Edges f , l, m, and n.

Some graphs do not have any bridges at all. However, if we take a connected graph and
start deleting edges from it, this might cause some of the remaining edges to become bridges.
Eventually, if we keep deleting edges that are not bridges, we will only have bridges left. That’s
what it means to be a tree!

(In fact, an equivalent way to phrase the definition of a tree would be, “A graph T is a tree
when all its edges are bridges.”)

7

Question: In Figure 9.3, what is the minimum effort needed to show that edge g
is not a bridge?

Answer: It’s enough to show that it has a substitute: any walk in the graph that
uses edge g could instead use the edges h, i, j, k. So it’s impossible to
find two vertices x and y such that all x− y walks rely on the existence
of edge g.

In other words, edges g, h, i, j, k make a cycle, and if something happens to one of these edges,
you can always “go the long way” around the cycle. In fact, this is always the reason why an
edge is not a bridge!

Lemma 9.2. In a connected graph G, edge xy is a bridge if and only if it is not on any cycles.

Proof. Let’s first formalize the idea of “going the long way around”. Suppose edge xy is part
of a cycle: let’s say that there is a cycle

x0, x1, x2, . . . , xk

where xk = x0, xi = x, and xi+1 = y. Then there is an x− y path

xi+1, xi+2, . . . , xk, x1, x2, . . . , xi

that does not use edge xy. We will use this path to show that G−xy is still connected, proving
that xy is not a bridge.

Let s, t be two vertices of G− xy. Because G is connected, G has an s− t path: a sequence

y0, y1, y2, . . . , yℓ

where y0 = s and yℓ = t. If edge xy is not even used on this path then the path still exists in
G− xy. Otherwise, if there is a place in the path where yj = x and yj+1 = y, we have the path

y0, y1, . . . , yj−1, xi+1, xi+2, . . . , xk, x1, x2, . . . , xi︸ ︷︷ ︸
the x−y path

, yj+2, . . . , yℓ

which no longer uses edge xy. (There might also be a place where yj = y and yj+1 = x; in this
case, reverse the x− y path before inserting it.) This shows that there is still at least an s− t
walk in G− xy; since s and t were arbitrary, G− xy is still connected.

For the other direction of the proof, suppose edge xy is not a bridge. Then G − xy is still
connected, and in particular, G− xy contains an x− y path: a sequence

z0, z1, . . . , zm

with z0 = x and zm = y. Then G contains a cycle using edge xy: the cycle

z0, z1, . . . , zm, z0

whose last edge zmz0 is the edge xy.

8

Question: After inserting the x − y path, why don’t we say that we’ve found an
s− t path in G− xy?

Answer: The sequence we create by insertion may no longer be a path: some
vertices might now be repeated. However, it’s definitely still a wlk,
which is all we need.

Question: In the second half of the proof, we assumed there was an x− y path in
G, rather than an x− y walk. Is this okay?

Answer: Yes: even though the definition of connected graphs only says there
is a walk between any two vertices, we know from Theorem 3.3 that
whenever an x− y walk exists, an x− y path also exists. (We also did
this earlier with an s− t path, and it was also fine there, though it was
less important to know that it’s a path.)

9.3 Properties of trees

What does Lemma 9.2 tell us about trees? In a tree T , every edge is a bridge, so no edge is
part of any cycles. Therefore a tree T has no cycles at all.

Question: When considering multigraphs, can a tree have loops or parallel edges?

Answer: No: a loop is a cycle of length 1, and a pair of parallel edges is a cycle
of length 2. So it is never necessary to model a tree as a multigraph
rather than a simple graph.

This is an important property, so we’ll give it a name. (In the next chapter, we’ll come back
and give it a second name: that’s how important it is!)

Definition 9.4. A graph is acyclic if it does not contain any cycles.

Not all acyclic graphs are trees. However, the following is true:

Proposition 9.3. A graph T is a tree if and only if it is connected and acyclic.

Proof. Both the condition in the proposition, and the definition of a tree, say that T is connected.
So we must only show that a connected graph is acyclic if and only if all its edges are bridges
(the second part of the definition of a tree).

If a graph is acyclic, then it has no cycles, so none of its edges lie on cycles: by Lemma 9.2,
they are all bridges. Conversely, if all edges of a graph are bridges, then by Lemma 9.2, none of
them lie on cycles—so no cycles can exist at all, because a cycle needs to contain some edges.
This proves the equivalence we wanted.

9

Proposition 9.3 is the first in a long line of results that characterize trees, giving an if-and-only-if
condition for a graph to be a tree. Every such characterization could have been the definition
of trees we started with—though some are more suited to it than others. Here is one more:

Proposition 9.4. A graph T is a tree if and only if it is acyclic, but adding any edge would
create a cycle.

Proof. Suppose T is a tree; by Proposition 9.4, we already know it is acyclic. Let e be any edge
we could add to T ; we want to show that T + e (the graph we get if we add edge e to T) has
a cycle. Well, e cannot be a bridge of T + e: deleting it would only give us T again, and T is
connected because it is a tree. So by Lemma 9.2, e must lie on some cycle in T + e, and in
particular, adding e to T created a cycle.

For the reverse direction, suppose that T is acyclic, but adding any edge would create a cycle.
We want to prove that T is connected: then we can use Proposition 9.3 and conclude that T is
a tree. To this end, let x, y be two vertices of T ; we will be done if we find an x− y path in T .

If xy is an edge of T , then there is such a path: a path of length 1. If not, then we know that
T + xy has a cycle. That cycle did not exist in T (because T is acyclic), so it must use the new
edge xy. As in the proof of Lemma 9.2, when there is a cycle using edge xy, there is an x− y
path not using that edge that “goes the long way around” the cycle. This is an x− y path that
still exists in T , finishing our proof that T is connected.

We could rephrase Proposition 9.4 to say that trees are exactly the graphs which are “maximally
acyclic”: acyclic with as many edges as possible, so that no more edges can be added without
losing that property. In this way, it is a kind of opposite of our definition of trees as “minimally
connected”: connected with as few edges as possible, so that no more edges can be removed
without losing that property.

9.4 Minimum-cost spanning trees

At the beginning of a chapter, we considered a transportation company which wants to find the
cheapest set of routes to keep its network connected. Though we said that the transportation
company wants to find a spanning tree of its network, that’s not the whole story. Not all
spanning trees are equally cheap, because not all of the routes in the transportation network
are equally cheap to run or to maintain. To keep track of this data, we need to consider more
than just a graph.

Definition 9.5. A weighted graph is a graph G together with a function w : E(G) → [0,∞).
For an edge e ∈ E(G), the value w(e) is called the weight or the cost of e.

Figure 9.4a shows an example of a weighted graph: what the transportation network’s route
map might look like. (To generate this simplified example, I placed the 16 vertices at slightly
random points, and computed the distance between the points to determine the cost of the
edges.)

10

110

100

90

126

110

92

117

76

133

114

110

92

112

82

100

76

133

92

91

130

122

95

110

73

(a) A weighted graph

110

100

90

110

92

76

110

92

82

76

92

91

95

110

73

(b) A minimum-cost spanning tree

Figure 9.4: Finding the minimum-cost spanning tree in a weighted graph

When we measure the cost of a subgraph of a weighted graph, we compute the total cost of
its edges, adding up their individual costs. A spanning tree T is a weighted graph is called
a minimum-cost spanning tree, or MCST for short, if it has the minimum total cost.
Figure 9.4b shows a minimum-cost spanning tree of the weighted graph in Figure 9.4a.

Question: Should the MCST just use all the cheapest edges in the graph?

Answer: No: some of the cheap edges might create a cycle with even cheaper
edges, making them redundant. On the other hand, some very expensive
edges might be necessary to connect the MCST.

There are many algorithms that can be used for finding the MCST of a weighted graph. Famous
ones include Prim’s algorithm and Kruskal’s algorithm. In this chapter, I will show you the
reverse-delete algorithm (published by Joseph Kruskal in the same paper [5] as the algorithm
that bears his name), because it bears the most resemblance to our proof of Theorem 9.1.

In that proof, we repeatedly deleted edges, one at a time, until we were left with a spanning tree;
however, the proof did not specify which edge to choose at each step. The only requirement is
that we must never delete a bridge.

If we were to modify that strategy to find a minimum-cost spanning tree, which edges should
we delete? The most natural guess is that of all the non-bridges, we should pick the most
expensive: the one with the highest weight. This is a “greedy” strategy: it makes the best
choice it sees in the moment, with no regard to how this affects future choices.

Question: How could a greedy strategy fail—what should we be concerned about?

Answer: It’s conceivable that if we delete a cheaper edge and keep a more ex-
pensive one early on, then later in the process this will let us delete
several more expensive edges to make up for it. The greedy strategy is
not obviously correct: this will take some proof.

11

Let us summarize the reverse-delete algorithm formally. This is a slight change from the strategy
we used to prove Theorem 9.1, because it only considers each edge once—however, there will
be no point in returning to a previously-considered edge, because it will only be left alone if it
is a bridge.

1. Let e1, e2, . . . , em be a list of the edges of G in decreasing order of cost: from most
expensive to cheapest. Also, let G0 = G; we will construct a sequence G1, G2, . . . , Gm of
graphs as we go.

2. Starting at i = 1, look at edge ei and ask: is ei a bridge of Gi−1?

If ei is a bridge, set Gi = Gi−1; if ei is not a bridge, set Gi = Gi−1 − ei.

3. Repeat step 2 for i = 2, 3, . . . ,m, until all edges have been considered. Return Gm as the
minimum-cost spanning tree.

We will assume that there are no ties between the costs of the edges. (One of the problems at
the end of this chapter will ask you to generalize this result to allow for ties.)

Theorem 9.5. Let G be a connected weighted graph in which all edges have distinct costs. Then
the output of the reverse-delete algorithm for G will be a minimum-cost spanning tree of G.

Proof. The algorithm always produces a connected graph, because it never deletes a bridge.
Also, the only edges that are kept are bridges. Specifically, if edge ei survives to the final graph
Gm, it must first survive to Gi, which means it must have been a bridge of Gi−1. Therefore
there is no cycle in Gi−1 containing ei. To obtain Gm from Gi−1, we only delete edges; therefore
Gm also cannot have a cycle containing ei, making ei a bridge of Gm. Since this is true for
every edge ei, Gm must be a tree. Let’s give Gm another name: call it T .

To prove that the algorithm is optimal, we need to compare T to an alternate spanning tree T ′,
and somehow argue that T is better than T ′. Specifically, what we’ll do is prove that if T ′ ̸= T ,
then T ′ cannot be the MCST, because we can make a small improvement to it. This will prove
the theorem, because it leaves T as the only possible candidate for the MCST.

How can we do this? Well, first of all, if T ̸= T ′, we can find an edge e which is present in
T , but not T ′. (If every edge of T were present in T ′, then either T ′ would be equal to T , or
T ′ would consist of T plus some additional edges. In the latter case, T ′ would not be a tree,
because it would not be minimally connected.)

By Proposition 9.4, the graph T ′ + e has a cycle. Let C be that cycle, and let e′ be the most
expensive edge of C.

By looking at the reverse-delete algorithm, we can prove that e′ cannot be part of T , and in
particular e′ ̸= e. Here’s why: suppose that e′ = ei in the list of edges by cost. In the graph
Gi−1 produced by the algorithm, ei is still present, and so are all the other edges of C, because
we have not gotten to any of them yet. Therefore C is a cycle of Gi−1 containing ei, meaning
(by Lemma 9.2) that ei is not a bridge of Gi−1. We conclude that ei (that is, e

′) is deleted and
does not survive to T = Gm.

Therefore we can modify T ′ as follows: add e, but then delete e′. This produces a cheaper
connected graph!

12

• Why is it cheaper? Because e′ is the most expensive edge of C, and e is some other edge
of C: we deleted a more expensive edge than we added.

• Why is it still connected? Because we deleted an edge from a cycle of T ′ + e, which (by
Lemma 9.2) was not a bridge.

Actually, it is true that (T ′ + e) − e′ is a tree itself, but proving that is inconvenient at the
moment; it will be much easier once we can use Theorem 10.2 from the next chapter. However,
we do not need to know that it is a tree. Since (T ′ + e) − e′ is connected, it certainly has a
spanning tree by Theorem 9.1. The total cost of that spanning tree is at most the total cost
of (T ′ + e) − e′, which in turn is strictly less than the cost of T ′. Therefore T ′ cannot be the
MCST.

Since this is true of any spanning tree other than T , we conclude that T is the unique spanning
tree of G.

Question: Will the tree T produced by the reverse-delete algorithm ever contain
the most expensive edge, e1?

Answer: It might, if e1 is a bridge ofG. For example, if e1 is the only edge incident
on a vertex, then we are forced to use it no matter how expensive it is.

Question: Will T always contain the cheapest edge, em?

Answer: It will, though this is not as obvious.

To delete em, it would need to be part of a cycle C in Gm−1. However,
that cycle had other edges, which we considered before em. Those edges
were also part of C when we considered them—so why didn’t we delete
them?

9.5 Practice problems

1. In the diagram of the cube graph shown below, each diagonal edge has length 1, each
vertical edge has length 2, and each horizontal edge has length 4.

Find a minimum-cost spanning tree of the cube graph, where the cost of each edge is
taken to be its length in this diagram.

2. Recall that in the hypercube graph Qn, vertices are n-bit strings b1b2 . . . bn, with an edge
between every pair of vertices that differ in one position.

Generalizing the previous problem, suppose we make Qn into a weighted graph by giving
an edge cost 2k if its endpoints differ in the kth bit. What will be the total cost of the
minimum-cost spanning tree of this weighted graph?

13

3. Let G be the graph shown below:

a) Identify all the bridges in G. (Check: there should be 5 bridges.)

b) Find all the possible spanning trees of G. (How does the answer to (a) help here?)

4. Prove that an n-vertex graph with the degree sequence n− 1, 1, 1, . . . , 1, 1 must be a tree.
What does such a graph look like?

5. Find a connected 3-regular graph G which has a bridge. (Hint: you’ll need at least 10
vertices.)

6. It’s even harder to find a 4-regular graph which has a bridge.

a) Let G be a 4-regular graph in which edge xy is a bridge. Then G−xy should have two
components: one containing x, and one containing y. Describe the degree sequences
of each component.

b) Conclude that this can’t happen: a 4-regular graph cannot have a bridge.

7. Prove that T is a tree if and only if, between any two vertices of G, there is exactly one
path. (This is another of the many characterizations of trees to accompany Proposition 9.3
and Proposition 9.4.)

8. Theorem 9.5 assumes that all edges of the graph have distinct costs: there are no ties.

a) Prove that if there are ties between the costs of some edges, then we can still conclude
one of two things in the proof: either we find a spanning tree cheaper than T ′ (so T ′

cannot be the MCST) or (T ′ + e) − e′ is a spanning tree with the same cost as T ′,
but “closer” to T in some sense.

b) Explain why this is enough to still deduce that T is an MCST (even if it might not
be unique).

c) Use this to prove that every spanning tree of the cube graph Q3 must have 7 edges.
(Do not, of course, use my claim that every spanning tree of Q3 is isomorphic to one
of the six trees in Figure 9.2.)

14

10 Properties of trees

The purpose of this chapter

Mathematically, the new properties of trees you will learn in this chapter are nothing special:
in Theorem 10.1 and Theorem 10.2, we will prove how many edges they have, and later in
Lemma 10.5 and Lemma 10.6, we will learn about their degree-1 vertices.

All this is notable because it is the point when trees suddenly begin pulling their weight as
theoretical tools that help us solve problems. I have included two examples of this: the flower
garden problem (based on my experience with recreational mathematics) and Corollary 10.9
(based on my experience with mathematical olympiads). In both cases, we are not solving a
problem about trees: we are solving a problem that trees help us solve, because the problem is
somehow related to a connected graph.

Lemma 10.6 is also important because it is what makes trees such an excellent setting for proofs
by induction.

10.1 A square garden

Suppose you are designing a garden in the shape of a square n×n grid. Each cell of the grid can
either contain flowers, or be part of a garden path for visitors. The garden path can bend and
fork however you like, but it must be connected: visitors to the garden must be able to see all of
it! Also, every cell of the grid with flowers must be next to a cell of the garden path—otherwise,
visitors will not be able to see the flowers, and gardeners will not be able to water them. In
both cases, only horizontal and vertical adjacencies count, not horizontal ones.

What is the largest number of cells of the grid that can contain flowers?

I have drawn some solutions for 4× 4, 5× 5, and 6× 6 flower gardens in Figure 10.1, to show
you what they can look like. If you’d like to try it yourself, see if you can manage to fill 29 cells
of a 7× 7 garden with flowers.

Solving the problem exactly for large n × n grids is, as far as I know, very difficult even with
the help of a computer. However, with the aid of the material in today’s chapter, we will able
to establish a very good upper bound on the number of flowers!

To do so, we will need to recast the problem as a graph. There are two relevant graphs at work
here, actually. The first is the grid graph, defined below:

Definition 10.1. For any m ≥ 1 and n ≥ 1, the m × n grid graph G(m,n) is the graph
with mn vertices: the points (x, y) where x ∈ {1, . . . ,m} and y ∈ {1, . . . , n}. Two vertices are
adjacent precisely when the points are at distance 1 from each other (in the Cartesian plane).

15

(a) 4× 4 (b) 5× 5 (c) 6× 6

Figure 10.1: Some high-density flower gardens

(a) 4× 4 grid graph (b) 4× 4 garden (c) The subgraph H

Figure 10.2: Representing a flower garden as a graph

The n× n grid graph G(n, n) represents the n× n flower garden: its vertices correspond to the
cells of the grid that forms the garden, and its edges correspond to adjacent cells. The n = 4
case of this is illustrated in Figure 10.2a. Of course, G(n, n) does not tell us anything about the
solution; it is merely the setting where the garden is posed. For simplicity, we will forget about
the grid in favor of the grid graph: we will say that we plant flowers on some of the vertices of
G(n, n), and put a garden path on the rest.

We can think of a solution to the flower garden problem as a spanning subgraph H of G(n, n).
We include only the edges of G(n, n) relevant to checking the solution. First, keep all edges of
G(n, n) between two vertices that are both part of of the garden path: these will be necessary
to check that the garden path is connected. Second, for every vertex where a flower is planted,
keep one edge to an adjacent garden path vertex: these are necessary to check that the flower
is accessible from the garden path. Figure 10.2b and Figure 10.2c show how a 4 × 4 solution
turns into a subgraph H.

Every valid flower garden turns into a subgraph H, but which subgraphs are the best? They
are the subgraphs with the most degree-1 vertices, because those are the vertices where flowers
are planted. (In principle, a garden path vertex can also end up having degree 1, if it is an end
of the garden path and not necessary to visit any flowers; however, in that case, we would do
better to just plant a flower there, instead.)

In Chapter 4, we called a vertex with degree 1 a leaf. So we are looking for a connected spanning
subgraph of H with as many leaf vertices as possible. Though there is no requirement for H to
be a spanning tree, you may notice that the graph in Figure 10.2c is in fact a tree. This is no

16

coincidence: cycles in H can only appear in the garden path, but even there they are wasted
adjacencies we’d rather use to plant more flowers.

How do we maximize the number of leaves in the spanning tree? To do this, we need to combine
some knowledge of vertex degrees with some facts about the number of edges in a tree, which
we will prove later in this chapter. I will postpone discussing the graph theory behind the flower
garden problem any further until you’ve seen that necessary background.

Before we move on to more theoretical questions, let me say a bit about the background of
this problem. I made up the flower-garden formulation of it for this book, but I’ve seen many
questions like it before. Mostly these have not been asked by professional mathematicians, but
by people analyzing board games and video games with a square grid. However, while writing
this chapter, I looked up and found a paper by Li and Toulouse [6] studying this exact problem:
“Maximum Leaf Spanning Tree Problem for Grid Graphs” by Li and Toulouse. The paper
confirmed that my solutions for the 4 × 4 and 6 × 6 grid are optimal, and informed me that
solving it is useful for practical questions in the areas of networking and circuit layout!

10.2 Counting edges in trees

By Proposition 9.3 from the previous chapter, a tree is an acyclic, connected graph. What can
we say about the number of edges this requires?

In Chapter 4, we looked at the relationship between the number of edges in a graph, and cycles
in the graph. Specifically, Corollary 4.6 tells us that an n-vertex graph with at least n edges is
guaranteed to contain a cycle.

Question: What does this tell us about the number of edges in an n-vertex tree?

Answer: To avoid creating any cycles, the tree can have at most n− 1 edges.

Question: If an n-vertex graph has n− 1 edges, must it be a tree?

Answer: No: there’s no reason to conclude the graph is either acyclic or con-
nected. For example, we could start with a cycle that has n− 1 vertices
and edges, then add an isolated vertex: this is a graph with n vertices
and n− 1 edges which is not a tree.

If this were all we knew about trees, then we’d have to stop there, because n-vertex graphs
without cycles can have any number of edges between 0 and n−1: there’s nothing forcing them
to have any edges. What forces trees to have edges, on the other hand, is the requirement to
be connected: we need some edges to connect the tree! Let’s explore how many.

Theorem 10.1. A graph with n vertices and m edges has at least n−m connected components.

17

Proof. We’ll prove this theorem by induction on m: just as in our proof of the Handshake
Lemma in Chapter 4, we will see what happens as we add edges to a graph one at a time. This
time, however, what we’ll be paying attention to is the number of connected components.

Our base case is m = 0. If a graph has n vertices and 0 edges, then every vertex is an isolated
vertex, so it is a connected component all by itself. There are always exactly n = n − m
connected components.

Now assume that the theorem is true for graphs with m− 1 edges, and let G be a graph with n
vertices and m edges. Let xy be an arbitrary edge of G, and consider the (m − 1)-edge graph
G− xy. By the induction hypothesis, G− xy has at least n−m+ 1 connected components.

There are two cases for what edge xy can do to change this:

• If x and y are in the same connected component of G− xy, then adding edge xy does not
do anything at all. There is already an x− y path, so any walk that used edge xy could
have used that x− y path instead. Therefore if two vertices are in the same component of
G, they’re also in the same component of G−xy; G also has at least n−m+1 connected
components.

• If x and y are in different connected components of G − xy, then those two components
become the same connected component of G. Any vertex in x’s component can reach
y (by going to x, then taking edge xy) and from there, it can reach any vertex in y’s
component.

However, that’s all that happens. If we look at a vertex z not in either of these connected
components, then there’s no walk starting at z that uses edge xy: it would first have to
get to x or y without using that edge, which is impossible. So walks from z are the same
in G and in G− xy.

As a result, G has one connected component less than G− xy: at least n−m connected
components.

In both cases, G has at least n − m connected components, so the induction is complete and
the statement we want is true for all n and m.

We can use these ideas to prove a few more characterizations of trees. Let’s do that, and
summarize all our results so far in one big theorem:

Theorem 10.2. The following conditions for a graph G with n vertices are all equivalent
definitions of a tree:

1. G is minimally connected: connected, but deleting any edge will disconnect it.

2. G is maximally acyclic: acyclic, but adding any edge will create a cycle.

3. G is both acyclic and connected.

4. G is connected and has at most n− 1 edges.

5. G is acyclic and has at least n− 1 edges.

6. G is uniquely connected: there is exactly one path between any two vertices.

18

Proof. We already know that conditions 1–3 are equivalent; we proved that last time. Assuming
condition 3, we can:

• Use Corollary 4.6 to conclude that G can have at most n− 1 edges to be acyclic, proving
condition 4;

• Use Theorem 10.1 to conclude that G must have at least n − 1 edges to be connected,
proving condition 5.

So conditions 4–5 are true of all trees.

Suppose that condition 4 holds. Then G is not only connected but minimally connected: if we
delete any edge, then the resulting n− 2 edges are not enough to connect G, by Theorem 10.1.
Therefore condition 1 holds, and G is a tree.

Suppose that condition 5 holds. Then G is not only acyclic but maximally acyclic: if we add any
edge, then the resulting n edges are guaranteed to contain a cycle, by Corollary 4.6. Therefore
condition 2 holds, and G is a tree.

This shows that conditions 1–5 are equivalent. I’ve included condition 6 from a practice problem
at the end of Chapter 9; it’s also equivalent to the rest, but I won’t prove that here.

Question: In condition 4 of Theorem 10.2, why do we say that G “has at most
n− 1 edges”, when in fact we can conclude G has exactly n− 1 edges?

Answer: One of the reasons to have many characterizations of a tree is to make
it as easy as possible to prove that a graph G is a tree. So conditions 4
and 5 are given weaker statements to make them easier to prove: if G is
connected, and we can easily check that it cannot have more than n− 1
edges, we don’t need to check that it has exactly that many edges.

10.3 From trees to forests

The statement of Theorem 10.1 is an inequality: the number of connected components is at least
n −m. In mathematics, every inequality we prove is also a challenge to understand when the
inequality is tight: when the ≤ turns into =. For example, the inequality in Theorem 10.1 is
tight when the graph is a tree: a tree with n vertices has n−1 edges and exactly n− (n−1) = 1
connected components. But are there other examples?

If k is the number of connected components, then the inequality k ≥ n−m can be rephrased as
m ≥ n−k: a graph with n vertices and k connected components must have at least n−k edges.
To get an example where this inequality is tight, we want to use as few edges as possible.

Question: If we want to reach the minimum number of edges, what should we do
in each connected component?

Answer: We want each connected component to be a tree, because this uses the
fewest edges to keep the component connected.

19

So we define:

Definition 10.2. A graph F is a forest if each connected component of F is a tree.

Question: In fact, we recently defined a different term for graphs that are forests.
What is it?

Answer: Forests are exactly the same as acyclic graphs. A tree is acyclic and con-
nected: in a forest, each connected component is a tree, which means
there are no cycles, but we’ve abandoned the requirement of being con-
nected.

Forests are also exactly the graphs for which the inequality of Theorem 10.1 is tight. (This
statements includes trees as a special case: in graph theory, a single tree is still a forest!)

Proposition 10.3. A graph with n vertices and m edges has exactly n−m connected components
if and only if it is a forest.

Proof. Suppose an n-vertex forest has k connected components: trees with n1, n2, . . . , nk ver-
tices, where n1 + n2 + · · ·+ nk = n. The ith tree has ni − 1 edges, so the total number of edges
in the forest is

(n1 − 1) + (n2 − 1) + · · ·+ (nk − 1) = (n1 + n2 + · · ·+ nk)− k = n− k.

Since m = n− k, we have k = n−m, proving one direction of the proposition.

To prove the other direction, suppose for the sake of contradiction that G is a graph with n
vertices, m edges, and exactly n − m connected components which is not a forest. Then G
contains a cycle; let e be any edge on this cycle.

By Lemma 9.2, e is not a bridge of its connected component: in G−e, that connected component
will remain connected. This means G − e still has exactly n −m connected components. But
G − e has n vertices and m − 1, so by Theorem 10.1, G − e must have n − m + 1 connected
components: a contradiction!

10.4 Leaves in trees

To solve the flower garden problem, we were interested in the number of leaves—degree 1
vertices—of a spanning tree of the n × n grid graph. Now that we know the number of edges
in a tree, the Handshake Lemma is sufficient to get a fairly precise upper bound. (I am going
to state the lemma in a more general form, to allow for the possibility of cycles in the garden
path and unused squares in the garden, but in spirit it is about spanning trees.)

Proposition 10.4. A connected subgraph of the n × n grid graph G(n, n) can contain at
most 2

3(n
2 + 1) leaves, and therefore an n × n flower garden can contain at most 2

3(n
2 + 1)

flowers.

20

Proof. Let H be a connected subgraph of G(n, n). We know that H has k vertices for some
k ≤ n2, and by Theorem 10.1, we know that H has at least k − 1 edges.

Suppose that H has l leaves. The remaining k − l vertices of H can have degree at most 4,
because the vertices of G(n, n) have degree at most 4. Therefore if we add up the degrees of all
k vertices of H, we get a total of at most

1 + 1 + · · ·+ 1︸ ︷︷ ︸
l times

+4 + 4 + · · ·+ 4︸ ︷︷ ︸
k−l times

= l + 4(k − l) = 4k − 3l.

By the Handshake Lemma, this total must be equal to twice the number of edges in H, giving
us the inequality

4k − 3l = 2|E(H)| ≥ 2(k − 1).

Solving for l, we get 3l ≤ 2k+2, or l ≤ 2
3(k+1). Since k ≤ n2, we obtain the bound we wanted:

l ≤ 2
3(n

2 + 1).

The inequality in Proposition 10.4 is not quite tight: it is impossible to reach exactly 2
3(n

2 +1)
flowers. For example, the garden in Figure 10.1c has 22 flowers, while 2

3(6
2 + 1) = 242

3 . (I have
written the answer as a mixed integer, which is unusual in advanced math, to make it clear that
the bound rounds down to 24.)

Part of the gap is due to number theory: actually, 2
3(n

2+1) is never an integer for any n, so the
sharper bound 2

3n
2 is also true. Part of the gap is that we can never obtain the ideal scenario

where all vertices of H have degree 1 or 4. However, the true answer to the problem is always
very close to 2

3n
2, as I will ask you to prove in one of the practice problems at the end of this

chapter.

In this application, we wanted to achieve the maximum number of leaves possible; it is also
often useful to know what the minimum number of leaves is.

Lemma 10.5. Every tree with at least 2 vertices has at least two leaves.

Proof. Consider a tree with n vertices, l of which are leaves. When n ≥ 2, it is impossible for
the tree to contain degree-0 vertices: such a vertex is an isolated vertex, and cannot be part of
a larger connected graph. Therefore the remaining n− l vertices have degree at least 2.

We can now apply the Handshake Lemma, as we did in the proof of Proposition 10.4. We know
that the sum of all n degrees in the tree is 2n− 2: twice the number of edges. However, we also
know that the sum is at least

1 + 1 + · · ·+ 1︸ ︷︷ ︸
l times

+2 + 2 + · · ·+ 2︸ ︷︷ ︸
n−l times

= l + 2(n− l) = 2n− l.

From the inequality 2n− l ≤ 2n− 2, we naturally deduce l ≥ 2: the tree must have at least two
leaves.

Question: Why do we have a ≤ inequality (2n− l ≤ 2n−2) in this proof, when we
got a ≥ inequality (4k − 3l ≥ 2k − 2) in the proof of Proposition 10.4?

Answer: In this proof, 2 is a lower bound on the degree of the non-leaf vertices; in
the previous proof, 4 was an upper bound on the degree of the non-leaf
vertices.

21

Figure 10.3: Leaves in the trees with 5 vertices

Figure 10.3 shows all three possible 5-vertex trees, up to isomorphism, with the leaves circled.
You can see that the number of leaves can vary; in this case, it varies from 2 (on the left) to 4
(on the right).

Question: Is it always possible to have an n-vertex tree with exactly 2 leaves?

Answer: Yes: the path graph Pn is a tree, because it is connected and has n− 1
edges, and only the start and end of the path are leaves.

Question: For an n-vertex tree, what is the maximum number of leaves?

Answer: It is n− 1 (at least when n > 2): imitating the last tree in Figure 10.3,
the graph with a single central vertex adjacent to n − 1 leaves is an
n-vertex tree. This graph is called a star graph.

When n > 2, all n vertices cannot be leaves, because then the degree
sum would be n, which is less than 2n− 2. However, this is achievable
when n = 2: the only 2-vertex tree, P2, has 2 leaves.

10.5 Induction on trees

Why is it important to have leaves? Because when a tree has leaves, we can pluck them to
make the tree a tiny bit smaller.

Lemma 10.6. If T is a tree and x is a leaf of T , then T − x is also a tree.

Proof. We have an abundance of conditions in Theorem 10.2 that we can check to prove this
lemma. I think the easiest one to use is condition 5.

T − x is acyclic because it’s a subgraph of T , which itself has no cycles. If T has n vertices
and n− 1 edges, then T − x has n− 1 vertices and n− 2 edges (because deleting x also deletes
the single edge incident on x). The number of edges is one less than the number of vertices, so
condition 5 of Theorem 10.2 is satisfied: T − x is a tree.

Lemma 10.6 is useful in a proof by induction. In Appendix B, I explain why it is important
to write your induction proofs backward: having assumed the induction hypothesis for (n− 1)-
vertex graphs, we must consider an n-vertex graph and remove a vertex from it to apply the
induction hypothesis. Lemma 10.6 gives us a convenient vertex to remove: if we are proving a

22

Figure 10.4: Coloring a tree using the proof of Proposition 10.7

theorem by induction about trees, then we can remove a leaf from an n-vertex tree to get an
(n− 1)-vertex tree.

The following example will, eventually, turn out to be a silly one. It is concerned with graph
coloring, which we will consider in general in Chapter 16. However, coloring with only 2 colors
is a special case: a graph that can be 2-colored is a bipartite graph, and in Chapter 12, we will
prove a general theorem that makes the upcoming Proposition 10.7 a corollary with a one-line
proof.

For now, though, it is a good way to practice induction on trees—and later, the ability to prove
this result much more easily will give you a well-deserved feeling of power.

Proposition 10.7. The vertices of every tree can be colored black and white such that no two
vertices of the same color are adjacent.

Proof. We induct on n, the number of vertices in the tree. When n = 1, there is only one
vertex, so we may give it any color we like without violating the condition.

Now assume, for some n ≥ 2, that every (n − 1)-vertex tree has a black-and-white coloring in
which no two vertices of the same color are adjacent. (Such a black-and-white coloring is called
a proper 2-coloring.) Let T be an arbitrary n-vertex tree; we will show that T also has a
proper 2-coloring.

Let x be a leaf of T (which exists by Lemma 10.5), and let y be its only neighbor in T . By
Lemma 10.6, T − x is also a tree; it has n− 1 vertices, so by the induction hypothesis, it has a
proper 2-coloring.

To color T , first give every vertex the same color that it had in T − x. Then, color x by the
following rule: if y is white, color x black, and if y is black, color x white. This rule ensures that
x and y do not have the same color; the same is true for every other pair of adjacent vertices,
because they were already adjacent in T − x, and T − x was given a proper 2-coloring.

This shows that T also has a proper 2-coloring, completing the induction step. By induction,
trees with any number of vertices have proper 2-colorings, completing the proof.

The proof of Proposition 10.7 is not just a proof: like many proofs by induction, it contains
a recursive algorithm. Given an n-vertex tree, we can color it by choosing a leaf, removing
it, and applying the coloring algorithm to the (n− 1)-vertex tree that remains, before putting
back the leaf we removed and coloring it as the nth vertex. Although the recursive algorithm
proceeds backwards from an n-vertex tree to a 1-vertex tree, if you think about the order in
which vertices are colored, it will appear as though we started from 1 vertex and grew the tree

23

x y

(a) T , with x and y circled

x y

(b) The subgraph H

×
x y

(c) The final result, H ′

Figure 10.5: The induction step of Proposition 10.8

by adding a succession of leaves, coloring them as we go. Figure 10.4 shows an example of
coloring a 6-vertex tree using this strategy.

Question: Can you deduce from the proof how many proper 2-colorings a tree has?

Answer: In the induction step of the proof, the color of x was forced: it had to be
the opposite color of y. Similarly, at every previous step, the color of the
leaf is forced. However, in the base case, we could give the single vertex
of a 1-vertex tree either color. So there are 2 proper 2-colorings possible,
based on which color we chose at that step. (They are opposites of each
other: one is obtained from the other by switching black and white.)

In most proofs by induction, the full power of Lemma 10.5 is not necessary: a single leaf is
enough. Here is an example where we really must use the existence of two leaves.

Proposition 10.8. Every tree with an even number of vertices has a spanning subgraph (not
necessarily connected) in which every vertex has odd degree.

Proof. As before, we induct on n, the number of vertices in the tree. Because the proposition
only considers trees with an even number of vertices, our base case is n = 2. In a tree with 2
vertices, both vertices are leaves, so the tree itself is the spanning subgraph we need.

Now assume, for some even n ≥ 4, that the proposition is true for all (n− 2)-vertex trees. (We
go back from n to n − 2, the previous even number.) Let T be an arbitrary n-vertex tree; by
Lemma 10.5, T has two leaves, which we call x and y. Figure 10.5a shows an example of such
a tree, in which you can follow along as we carry out the induction step.

Applying Lemma 10.6 twice, the subtree (T−x)−y is an (n−2)-vertex tree. So it has a spanning
subgraph in which every vertex has odd degree. Add x and y back into this subgraph (as isolated
vertices) and call the result H. (The graph H in our example is shown in Figure 10.5b.)

This H is a spanning subgraph of T , but what about the degrees? Vertices x and y have degree
0 in H, by construction, which is even. However, every other vertex has an odd degree in H,
just as we wanted. All that’s necessary is to fix x and y.

At first, this seems impossible. Suppose you add the edge incident on x to H. Then vertex x
now has odd degree, but its neighbor has even degree. If you make a change to fix that neighbor,
another vertex will go from odd to even, and so on.

24

This is the reason that we need to work with two leaves at once. In T , there is an x− y path.
Change H to a new graph H ′ by toggling every edge along the x − y path in T . (That is, for
every edge of the path, if it is not in H, add it, and if it is in H, remove it. If the explanation
is not clear, see Figure 10.5c for an example.)

We can check by cases that every degree in H ′ is odd:

• A vertex not on the x− y path is untouched, and still has odd degree.

• A vertex in the middle of the x− y path either gained two edges, gained an edge and lost
an edge, or lost two edges. The change in degree is +2, +0, or −2, so the degree remains
odd.

• Finally, x and y gain an edge (because the edges incident on x and on y were not in H
before), so their degree goes from 0 to 1: an odd number.

Therefore T has a spanning subgraph in which every vertex has odd degree: the subgraph H ′.
By induction, the same is true for every tree with an even number of vertices.

Question: Does any tree with an odd number of vertices have a spanning subgraph
such as the one in Proposition 10.8?

Answer: No: that would be a graph with an odd number of vertices, all with odd
degree, which cannot exist by the Handshake Lemma.

This example is also an illustration of an idea that I first mentioned in Chapter 9: if we must
prove a theorem for connected graphs, and the theorem is only helped by having more edges,
then it’s enough to prove the theorem for trees—which will be the hardest case.

Here, once we have Proposition 10.8, we may immediately obtain the following corollary, which
was proven by Atsushi Amahashi in 1985 [4], and later appeared as a problem on the 2005 Bay
Area Math Olympiad [1].

Corollary 10.9. Every connected graph with an even number of vertices has a spanning sub-
graph (not necessarily connected) in which every vertex has odd degree.

Proof. Apply Proposition 10.8 to a spanning tree of the graph.

10.6 Practice problems

1. Let T be tree whose degree sequence has the form 4, 3, 2, 1, 1, 1, . . . (that is, 4, 3, 2 followed
by some number of 1’s).

a) Determine the number of 1’s in the degree sequence of T .

b) There is more than one possibility for a tree T with this degree sequence. Give
two non-isomorphic trees with this degree sequence, and explain why they are not
isomorphic.

2. Find all 6-vertex trees up to isomorphism. (There are six of them.)

25

3. Let G be a graph with 10 vertices and 10 edges.

a) If G contains exactly one cycle, how many connected components must it have? Give
an example of such a graph.

b) If G contains exactly two cycles, how many connected components must it have?
Give an example of such a graph.

c) If G contains exactly three cycles, there’s two possible values for the number of
connected components. Why is that? Give examples for each possibility.

(In this problem, we consider two cycles to be the same if they are the same as subgraphs
of G, not if they are the same as sequence of vertices. For example, the cycle x, y, z, x is
the same cycle as z, y, x, z.)

4. Prove that when n is a multiple of 3, there is a solution to the n×n flower garden problem
which contains at least 2

3(n
2 − n) + 2 flowers.

(You will have to come up with a generalizable layout for the flower garden which contains
this many flowers—see if you can generalize the layout in Figure 10.1c.)

5. Find all 8 spanning trees of the graph below. (I do not care about isomorphism in this
problem; if several spanning trees are isomorphic but different graphs, find them all.)

6. a) Prove that if x and y are vertices of a graph G in the same connected component,
then adding edge xy to G creates at least one new cycle.

b) Imitate the proof of Theorem 10.1 to prove that a graph with n vertices and m edges
has at least m− n+ 1 cycles.

7. a) Let T be a tree in which every edge e is labeled by a positive integer. Prove that it’s
possible to place positive integer labels on the vertices of T such that for any two
adjacent vertices x and y, the absolute difference between their labels is exactly the
label of edge xy. An example is shown in the diagram below:

3 1 4

1 5 9

2 6 5

2

1

4

4

1

4

5

4

(Of course you can go from the vertex labels to the edge labels; that’s just subtraction.
I am asking you to go from the edge labels to the vertex labels.)

b) Find an example of a graph (not a tree!) in which every edge is labeled by a positive
integer in such a way as to make the task in part (a) impossible.

26

8. Prove that if T is a k-vertex tree and G is a graph with minimum degree at least k − 1,
then G contains a subgraph isomorphic to T .

9. Prove that for any sequence of n ≥ 2 positive integers whose sum is 2(n − 1), there is a
tree with that degree sequence.

(Compare this to the complicated procedure we developed in Chapter 4 to determine if
there is any graph at all with a given degree sequence!)

27

11 Cayley’s formula

The purpose of this chapter

I am including a chapter on Cayley’s formula for the number of labeled trees with n vertices
in this book, first of all, because it is a beautiful piece of mathematics. It comes with an
introductory look at counting problems in graph theory, which I think is especially important
to include because I often tend to overlook such problems when I think about what a graph
theorist needs to know. (The next chapter is also about counting problems in graph theory, but
from a very different perspective.) In short, even though Cayley’s formula is not necessary as
a prerequisite for any of the following chapters, I think it is a worthwhile topic to study on its
own.

I do not like including sections such as the last section of this chapter, which is mainly about
results too complicated to prove in this book. However, I think that a textbook must say
something about the unlabeled counting problem even if it simply says that not very much is
known about the problem. When teaching this topic, I would not have feelings that are nearly
as strong; I think it is perfectly acceptable to say that the textbook has a page on the unlabeled
version of the problem, and leave it at that.

11.1 How to count graphs

This chapter is the first in which we will seriously look at counting problems in graph theory.
These are usually questions of the form “How many graphs satisfying such-and-such property
are there?” or “Given a graph G, how many objects of such-and-such type does G contain?”

When we count graphs, we must first choose between two options that are typically described as
“counting labeled graphs” and “counting unlabeled graphs”. This is a bit misleading, because all
graphs are labeled, in the sense that all graphs have a vertex set with distinguishable elements,
but it does convey the right intuition. Here is how to describe these options more precisely.

Counting labeled graphs is typically the easier of the two problems. To describe it more precisely,
suppose that we being by choosing a set V of size n: it does not matter too much which set V ,
as long as we choose it, so choosing V = {1, 2, . . . , n} is a very reasonable and simple choice.
Then we ask: how many graphs with vertex set V have a certain property?

Counting unlabeled graphs is typically harder, because questions of symmetry and group theory
often enter the picture. Although you might imagine that a “labeled graph” is a graph that used
to be unlabeled and then received labels, mathematically the relationship between the problems
is the opposite. To count unlabeled graphs of some type, we start with the set S of all labeled
graphs of that type (again, with some fixed vertex set V). Commonly, many of the graphs in
S will be isomorphic. Graph isomorphism is an equivalence relation on S, so it partitions S

28

into equivalence classes. The unlabeled problem, formally, asks: how many equivalence classes
are there? In other words, if we consider isomorphic graphs in S to be the same, how many
different ones are there?

In this chapter, we will count n-vertex trees. Most of the chapter is devoted to the labeled
counting problem, for which a clean and beautiful formula exists. Much less is known about
the unlabeled counting problem, but I will summarize what is known about it at the end of the
chapter.

Now that we’ve made a decision about which problem we’re counting, we need some counting
techniques. Studying these is a whole branch of combinatorics, so naturally I cannot explain
all counting techniques for you in half a page. I will just give you one particular approach to
counting problems: we can count elements a set by first finding an encoding for these elements,
and then counting the number of valid encodings. That’s just replacing one counting problem
by another, of course—but if we choose the right encoding, then it will be an easier problem.
Here are two examples.

Problem 11.1. How many labeled graphs on n vertices are there?

Answer to Problem 11.1. We will encode these graphs as binary strings of length
(
n
2

)
. Here,(

n
2

)
= n(n−1)

2 is the number of edges in the complete graph Kn, which we will also consider to
have vertex set {1, 2, . . . , n}. To encode a graph G with V (G) = {1, 2, . . . , n}, we go through
the edges of Kn in a fixed order, such as the dictionary order

12, 13, . . . , 1n, 23, 24, . . . , 2n,

For each edge, we ask: does G also contain that edge? If so, we write down a 1; if not, we write
down a 0.

At the end, the sequence of
(
n
2

)
zeroes and ones uniquely encodes G: we can recover G from

the sequence, and there is only one sequence from which we recover G and not any other graph.
Moreover, all sequences of

(
n
2

)
zeroes and ones are valid encodings: they correspond to one

of the graphs we want to count. Together, these two claims tell us that there is a bijection
between the graphs we’re counting and their encodings—so we can count the encodings instead
of counting the graphs.

There are 2(
n
2) sequences of

(
n
2

)
zeroes and ones (because we have 2 choices for each bit in the

sequence) and therefore there are 2(
n
2) labeled graphs on n vertices.

Problem 11.2. How many labeled 1-regular graphs on n vertices are there?

Answer to Problem 11.2. As we know from Chapter 5, such graphs only exist when n is even.
In the cases of even n, we could begin by listing all n/2 edges in the graph. This is done in
Figure 11.1 in the case n = 4.

Question: Are there multiple ways to list the edges in a graph in a sequence?

Answer: Yes: for each edge xy, we can also write it as yx, and we can also write
the edges in any order.

29

1 2

3 4

(a) 12, 34

1 2

3 4

(b) 13, 24

1 2

3 4

(c) 14, 23

Figure 11.1: The 1-regular graphs with vertex set {1, 2, 3, 4}

To make the encoding a unique encoding, we should make a rule for how the edges should be
written, and in which order they should appear. A simple option is to write a “sorted sequence
of sorted edges”: to sort each edge xy so that x < y, and to sort the sequence of edges by the
first number in each pair. This is already done in Figure 11.1.

Question: Are all “sorted sequences of n/2 sorted edges” valid encodings?

Answer: No: some of the encode graphs with n/2 edges that are not 1-regular,
by leaving out some vertices and using others too many times. Each
vertex must appear exactly once.

If not all sequences are valid encodings, this complicates our life, but we can still proceed. We
just have to describe which encodings are valid, and count only the valid ones.

If the encoding scheme we’ve chosen is a good one, we will be able to count valid encodings by
the product principle: going from left to right, there will be a fixed number of options for
the number in each position, and by multiplying together the number of choices at each step,
we can count the overall number of encodings.

Question: Going from left to right, what are the constraints on the numbers in the
“sorted sequence of sorted edges”?

Answer: The first number in each edge is uniquely determined: it is simply the
smallest element of {1, 2, . . . , n} that has not yet appeared. The second
number in each edge can be any of the numbers that have not yet
appeared.

Question: Going from left to right, how many options are there for each number?

Answer: There is 1 option for the first number in each edge, and n − 2k + 1
options for the second number in the kth edge.

Multiplying together these options, we get a product

1 · (2n− 1) · 1 · (2n− 3) · 1 · (2n− 5) · · · 1 · 3 · 1 · 1︸ ︷︷ ︸
n factors

in answer to the problem. We can ignore the factors of 1 and just say that this is the product
of the first n/2 odd positive integers. For example, we get 3 · 1 = 3 when n = 4 (as seen in

30

Figure 11.1), 5 · 3 · 1 = 15 when n = 6, 7 · 5 · 3 · 1 = 105 when n = 8, and so on. This product is
often written with the double factorial symbol (2n− 1)!!.

11.2 Trees and deletion sequences

Having solved a few problems for practice, we can move on to the question we’re really interested
in: how many labeled trees on n vertices are there?

The solution to Problem 11.2 gives us a good starting point. An n-vertex tree, as we know, is
in particular an (n−1)-vertex graph. So we can begin by writing down the edges of that graph,
in a convenient order.

The most convenient order to use here is not the dictionary order we used before. We would like
to make use of the structure of a tree! In particular, we know from Lemma 10.6 in the previous
chapter that if we remove a leaf vertex (and its only edge) from a tree, we get a smaller tree.
We used this to great effect to write inductive proofs of theorems about trees; it can be used to
equally great effect to write recursive algorithms for problems about trees.

Given a tree T with vertex set {1, 2, . . . , n}, here is an algorithm to list all its edges in a uniquely
defined order:

1. If n = 1, then there are no edges, so the list of edges should be empty as well.

2. Otherwise, for n > 1, the tree T will have some leaves. Let x be the lowest numbered leaf,
and let y be its neighbor: write down the pair (x, y), in that order.

3. Delete vertex x and edge xy from T to get an (n− 1)-vertex tree T − x. To write the rest
of the sequence, go back to step 1, but with tree T − x in place of T .

We will call the result of this algorithm a deletion sequence for T . (This is not a universally
recognized term, but simply the term I will use in this chapter to explain our counting strategy.)
As an illustration of the technique, Figure 11.2 shows how, starting with the tree in Figure 11.2a,
we determine that its deletion sequence is

(1, 4), (3, 4), (4, 6), (5, 2), (6, 2), (2, 7).

Question: Is the deletion sequence of a tree a unique encoding of that tree?

Answer: Yes, it is. We can recover the tree from its deletion sequence, because
the deletion sequence is after all a list of edges. Moreover, each tree only
has one deletion sequence, because the deletion sequence is computed
by an algorithm with no freedom at any step.

There is a great deal of redundancy in the deletion sequence of a tree. Before proving a general
result about it, let’s explore a few examples. In all of these, I will erase some numbers from
the deletion sequence we just constructed and ask how they can be filled back in to get a valid
deletion sequence. Of course, one way to fill in the number is to put back the number we erased,
getting back the deletion sequence we started with. However, we want to know if there are any
other deletion sequences that have a different value in that blank!

31

1 3 5 7

4 2

6

(a) Write down (1, 4)

3 5 7

4 2

6

(b) Write down (3, 4)

5 7

4 2

6

(c) Write down (4, 6)

5 7

2

6

(d) Write down (5, 2)

7

2

6

(e) Write down (6, 2)

7

2

(f) Write down (2, 7)

Figure 11.2: Finding the deletion sequence of a tree

Question: In the incomplete deletion sequence

(1, 4), (3, 4), (4, 6), (5, 2), (6, 2), (2,),

how many ways are there to fill in the blank?

Answer: The number in the blank can only be 7.

The reason is that vertex 7 will never be deleted as the smallest leaf of
the tree: there are always at least two leaves, one of which is smaller
than 7. Therefore it is the last vertex remaining, and will always occupy
the last position in the deletion sequence.

Question: In the incomplete deletion sequence

(1, 4), (3, 4), (, 6), (5, 2), (6, 2), (2, 7),

how many ways are there to fill in the blank?

Answer: The number in the blank can only be 4.

The reason is that vertices 1, 2, 3, 4, 5, 6 must all be eventually deleted.
The five complete ordered pairs tell us when we deleted vertices 1, 2, 3,
5, and 6, so the incomplete ordered pair must tell us when we deleted
vertex 4.

32

Question: In the incomplete deletion sequence

(1, 4), (3, 4), (, 6), (, 2), (6, 2), (2, 7),

how many ways are there to fill in the two blanks?

Answer: Once again, the answer is uniquely determined: the blanks must contain
4 and 5, in that order.

By the same reasoning as above, we know that 4 and 5 must go in
those two blanks in some order. Since neither number appears later in
the deletion sequence, we know that none of their neighbors are deleted
later: after the first two steps, both vertices 4 and 5 are leaves. Since 4
is a smaller number, it will be the leaf deleted first.

But all of these questions are thinking too small: we can take the incomplete sequence

(, 4), (, 4), (, 6), (, 2), (, 2), (,)

and fill in all 7 blanks in a unique way!

First of all, we know that the first six blanks are the numbers 1 through 6, while the last blank
is 7. The order of the numbers 1 through 6 is not known yet, but even without knowing the
order, we know how many times each number appears in the deletion sequence, in total: the
number of times we see it in the incomplete sequence, plus 1.

This tells us the degree of every vertex:

x 1 2 3 4 5 6 7

deg(x) 1 3 1 3 1 2 1

Why is this helpful? Because it tells us that at the beginning of the algorithm to generate the
deletion sequence, the leaves were 1, 3, 5, and 7. Of these, 1 is the smallest, so it must be the
first leaf deleted: the first pair is (1, 4).

From there, we can deduce that after vertex 1 is deleted, the degrees of the vertices were as
follows:

x 2 3 4 5 6 7

deg(x) 3 1 2 1 2 1

The leaves were 3, 5, and 7, of which 3 is the smallest. Therefore the second pair must be (3, 4).

If we keep going in this manner, we can reconstruct the entire deletion sequence, because we
can determine the degree of each remaining vertex at each step of the algorithm. Just 5 of the
12 numbers in the deletion sequence were necessary!

11.3 Prüfer codes

Our strategy in the preceding section generalizes fully. We can summarize the properties we
use in the following two properties of a sequence (a1, b1), (a2, b2), . . . , (an−1, bn−1):

33

1 3 5 7

4 2

6

(a) Write down 4

3 5 7

4 2

6

(b) Write down 4

5 7

4 2

6

(c) Write down 6

5 7

2

6

(d) Write down 2

7

2

6

(e) Write down 2

7

2

(f) Stop

Figure 11.3: Finding the Prüfer code of a tree

For every k from 1 to n−1, the number ak is the smallest positive number
not contained in the set {a1, a2, . . . , ak−1} ∪ {bk, bk+1, . . . , bn−2}.

(11.1)

bn−1 = n. (11.2)

Lemma 11.1. If a sequence (a1, b1), (a2, b2), . . . , (an−1, bn−1) is the deletion sequence of a tree
with vertices 1, 2, . . . , n, then it satisfies properties (11.1) and (11.2).

Proof. The tree at every stage of the algorithm that generates the deletion sequence has at least
two leaves, so the smallest leaf will never be vertex n. Therefore vertex n will never be the
deleted leaf, so it will be the last vertex remaining: bn−1 = n. This proves (11.2).

Meanwhile, a1, . . . , an−1 are a permutation of 1, 2, . . . , n − 1, representing the order in which
the other vertices are deleted. After the first k − 1 stages of the algoritm that generates the
deletion sequence, the tree that remains has edges (ak, bk) through (an−1, bn−1). Vertices in the
set {a1, a2, . . . , ak−1} are not present in this tree; they have already been deleted.

The remaining vertices of the tree appear once in the set {ak, ak+1, . . . , an−1, bn−1}. They have
degree 1 if this is their only appearance: if they do not appear in the set {bk, bk+1, . . . , bn−2}.
Vertex ak is the smallest leaf remaining at this stage, so it is the smallest positive number not
contained in the set {a1, a2, . . . , ak−1} ∪ {bk, bk+1, . . . , bn−2}. This proves (11.1).

Since the numbers determined by Lemma 11.1 can be deduced from the others, they are not
necessary to recover the tree. Therefore, instead of recording the deletion sequence of a tree, it
is enough to record the sequence (b1, b2, . . . , bn−2). This sequence is called the Prüfer code of
the tree, named after Heinz Prüfer, who proposed Prüfer codes as a method of counting labeled
trees in 1918 [7].

It is worth mentioning that the Prüfer code of a tree can be directly computed using an abbre-
viated version of the algorithm that computed the deletion sequence. The only two differences
are that instead of writing down the pair (x, y), we only write down the vertex y, and that we
stop when there are 2 vertices and 1 edge left. Figure 11.3 illustrates this on an example.

34

Question: Does the Prüfer code of a tree uniquely encode that tree?

Answer: Yes: from the Prüfer code, we can recover the deletion sequence using
properties (11.1) and (11.2), and the deletion sequence simply tells us
the edges of the tree.

Question: Is this enough to count the labeled trees on n vertices?

Answer: No: we need to know whether all possible sequences (b1, b2, . . . , bn−2)
are valid Prüfer codes, or whether there are some constraints on these
numbers.

In fact, there are no further constraints: every sequence (b1, b2, . . . , bn−2), where each term is
an element of {1, 2, . . . , n}, is the Prüfer code of a tree with vertex set {1, 2, . . . , n}. To prove
this, the most important claim we have not yet shown is that (11.1) and (11.2) are not just
properties every deletion sequence has: they are properties only a deletion sequence can have.

Lemma 11.2. If a sequence (a1, b1), (a2, b2), . . . , (an−1, bn−1) in which every term (ai, bi) is a
pair of numbers from 1 to n satisfies properties (11.1) and (11.2), then it is the deletion sequence
of a tree with vertex set {1, 2, . . . , n}.

Proof. Let’s make some initial observations. First, since ak /∈ {a1, a2, . . . , ak−1}, the num-
bers a1, a2, . . . , an−1 are distinct. They are all smaller than n, since each is the smallest pos-
itive number not contained among at most n − 2 options; therefore, they are a permutation
of {1, 2, . . . , n− 1}.

Second, consider bk for 1 ≤ k ≤ n − 2. Since none of a1, a2, . . . , ak can equal bk, but bk is
an integer from 1 to n, we know that it must be an element of {ak+1, . . . , an−1, n}. From this
observation, it follows that we can define a graph Tk with V (Tk) = {ak, ak+1, . . . , an−1, n} and
E(Tk) = {akbk, ak+1bk+1, . . . , an−1bn−1}: each edge in E(Tk) really does have both endpoints
in V (Tk).

We are now ready to proceed with the proof. The graph Tk is not just any graph: it is a tree
in which the leaf with the smallest number is ak. We will prove this by an induction that starts
with Tn−1 and ends with T1.

In the base case, Tn−1 is the graph with vertices {an−1, n} and edge an−1bn−1; since bn−1 = n,
this is an edge between Tn−1’s two vertices, so Tn−1 is a tree. Both an−1 and bn−1 are leaves,
but since bn−1 = n and an−1 ̸= bn−1, an−1 must be the smaller leaf.

Next, for some positive k < n− 1, suppose Tk+1 is a tree. The only difference between Tk and
Tk+1 is that we add vertex ak and edge akbk. By our first observation, ak /∈ V (Tk+1), so ak is a
leaf of Tk. Since Tk+1 is a tree, it is acyclic, so Tk cannot contain any cycles not using vertex ak;
it cannot have any cycles using ak, either, because ak has degree 1. Therefore Tk is still acyclic;
we know it has n−k+1 vertices and n−k edges, so it is a tree by condition 5 of Theorem 10.2.

Each ai for i < k is not yet a vertex of Tk, by our first observation. Each bi for i ≥ k appears a
second time as aj for j > i, by our second observation; so it is the endpoint of at least two edges

35

of Tk, and is not a leaf. Among the remaining positive integers, ak is the smallest; therefore in
particular it is the smallest leaf of Tk. This completes the induction.

From this claim, it follows that the deletion sequence algorithm, when encountering tree Tk, will
write down the pair (ak, bk) and delete ak, then either go on to tree Tk+1 or (if k = n− 1) stop.
In particular, if we start with tree T1, the deletion sequence algorithm will proceed through the
trees T2, T3, . . . , Tn−1 and write down the sequence

(a1, b1), (a2, b2), . . . , (an−1, bn−1),

which is exactly what we wanted to show.

With this setup complete, we are ready to complete the count of labeled trees. This theorem is
known as Cayley’s formula after Arthur Cayley, whom we already know as the mathematician
that came up with the term “tree”. (So, you see, Prüfer’s argument was not the first to be
found. However, as it sometimes happens, Cayley was not the first, either; the formula was first
proven by Carl Wilhelm Borchardt in 1860 [2].)

Theorem 11.3 (Cayley’s formula). There are nn−2 trees with vertex set {1, 2, . . . , n}.

Proof. Each tree with vertex set {1, 2, . . . , n} has a Prüfer code (b1, b2, . . . , bn−2) whose elements
are integers between 1 and n, uniquely defined by the deletion sequence algorithm. Therefore
the number of trees with vertex set {1, 2, . . . , n} is exactly the number of possible Prüfer codes.

Moreover, for every such sequence (b1, b2, . . . , bn−2), we can apply (11.1) to determine a1, then
a2, and so on through an−1, as long as we go in that order: each ak will be the smallest positive
integer not contained in a set we’ve already entirely determined. We can also set bn−1 = n.
Now, the sequence

(a1, b1), (a2, b2), . . . , (an−1, bn−1)

is a deletion sequence of a tree with vertex set {1, 2, . . . , n}, by Lemma 11.2, and therefore
(b1, b2, . . . , bn−2) is the Prüfer code of that tree. This shows that every sequence n− 2 integers
from 1 to n is a valid Prüfer code. There are exactly nn−2 such sequencess, since there are
n options for each of the numbers b1 through bn−2, so the number of trees with vertex set
{1, 2, . . . , n} is also nn−2.

11.4 Working with Prüfer codes

There are a few more difficult questions to ask about Prüfer codes, but let’s first pause to make
sure that we can return from the abstract results to concrete claims. Take a Prüfer code like
(2, 1, 2, 5, 4). How do we turn it back into a tree?

Let’s write down what we know about the deletion sequence of that tree, even if there’s still
some blanks to be filled in:

(, 2), (, 1), (, 2), (, 5), (, 4), (,).

A Prüfer code is always a sequence of n − 2 numbers from 1 to n; since we started with 5
numbers, their values will range from 1 to 7. We fill in the blanks from left to right.

36

1 2

3

456 7

Figure 11.4: The tree with Prüfer code (2, 1, 2, 5, 4).

For the first blank, which is a1, we use (11.1). There are no a-terms before a1; however, a1
needs to be distinct from {b1, b2, b3, b4, b5} = {1, 2, 4, 5}. The smallest integer not on this list is
3, so we set a1 = 3:

(3, 2), (, 1), (, 2), (, 5), (, 4), (,).

We continue to use (11.1) for the next blank, which is a2. Here, the excluded values are
a1, b2, b3, b4, b5 or 3, 1, 2, 5, 4. We fill in the blank with the first integer not on this list, which is
6:

(3, 2), (6, 1), (, 2), (, 5), (, 4), (,).

We go on in this way. Some people prefer to arrange the entries in a 2 × (n − 1) table, where
each ai entry (in the first, initially empty row) must be distinct from everything to its left, as
well as everything below it and to the right:

a1 a2 a3 a4 a5 a6
b1 b2 b3 b4 b5 b6

=
3 6 ?

2 1 2 5 4

Regardless, we fill in a3 = 1 (the smallest value not among 3, 6, 2, 5, 4), then a4 = 2 (the smallest
value not among 3, 6, 1, 5, 4), then a5 = 5 (the smallest value not among 3, 6, 1, 2, 4), then a6 = 4
(the smallest value not among 3, 6, 1, 2, 5). All this is done using (11.1); then, the last blank is
b6 = 7 by (11.2). The completed deletion sequence is

(3, 2), (6, 1), (1, 2), (2, 5), (5, 4), (4, 7).

This sequence tells us the edges of the tree, and if we like, we can draw a diagram such as the
one in Figure 11.4.

That being said, it is not too often that we find ourselves needing to actually convert a Prüfer
code back into a tree: it only matters for the proof of Theorem 11.3 that we can, in principle,
do it.

This does mean that Prüfer codes have no use beyond the proof of Theorem 11.3. The Prüfer
code of a tree actually contains a bit of information about the tree, which we can use to solve
more complicated counting problems. For example:

Proposition 11.4. In the Prüfer code of a tree where deg(x) = k, the number x appears k− 1
times.

Proof. When we fill in the blanks in the sequence

(, b1), (, b2), . . . , (, bn−2), (,)

we use each of the numbers 1, 2, . . . , n once. The number n is going to fill in the second blank
of the last pair, and the numbers in the first blanks are a permutation of 1, 2, . . . , n− 1.

37

Therefore if a number x appears k−1 times in the Prüfer code, it appears k times in the deletion
sequence

(a1, b1), (a2, b2), . . . , (an−1, bn−1).

But the deletion sequence is just a particular way to write down the edges of the tree, so if
x appears in the deletion sequence k times, then it is the endpoint of k edges, which is just
another way of saying that deg(x) = k.

For example, even before we turned the Prüfer code (2, 1, 2, 5, 4) back into the tree shown in
Figure 11.4, we could have known the rough structure of the tree:

• Vertices 3, 6, and 7 are leaves, because they do not appear in the Prüfer code at all.

• Vertices 1, 4, 5 appear once, and therefore have degree 2.

• Vertex 2 appears twice, and therefore has degree 3.

Question: What can we say about the shape of such a tree, knowing only the
degrees of the vertices?

Answer: Such a tree must consist of three paths starting at vertices 3, 6, 7 and
converging at vertex 2.

Here is a quick example of using Proposition 11.4 to solve a counting problem:

Corollary 11.5. There are (n− 1)n−2 trees with vertex set {1, 2, . . . , n} in which vertex 1 is a
leaf.

Proof. By Proposition 11.4, vertex 1 is a leaf (has degree 1) if and only if the number 1 never
appears in the Prüfer code. There are (n − 1)n−2 such codes: the code is a sequence with
n− 2 terms, each of which is now restricted to one of the n− 1 values in the set {2, 3, . . . , n}.
Therefore there are (n− 1)n−2 such trees.

11.5 Counting unlabeled trees

Now that we’ve counted labeled trees on n vertices, we can try to say something about the
unlabeled trees on n vertices as well, but it will be difficult.

The unlabeled trees can be thought of as equivalence classes of the nn−2 labeled trees. Each
equivalence class is a set of trees that are isomorphic, but differently labeled. Sometimes such
problems can be handled by a simple division, but only if we’re very lucky and the equivalence
classes all have the same size. Here, that is far from true.

38

1 2 3 · · · n

(a) An n-vertex path

1

2 3 4 · · · n

(b) An n-vertex-star

Figure 11.5: Two labeled trees with very different structures

Question: Figure 11.5a shows one labeled tree on n vertices: an n-vertex path.
How many labeled trees on n vertices are isomorphic to this path?

Answer: There are n! ways to put the vertices in order from left to right along
the path. However, the graph does not know a “left” and a “right”:
if you reverse the sequence, you get the same graph, drawn in reverse.
Therefore there are 1

2n! paths with vertex set {1, 2, . . . , n}.

Question: Figure 11.5b shows another labeled tree on n vertices: an n-vertex star.
How many labeled trees on n vertices are isomorphic to this star?

Answer: As soon as we choose which vertex in the set {1, 2, . . . , n} is the vertex of
degree n−1 at the center of the star, the graph is completely determined,
so there are n labeled n-vertex stars.

If all n-vertex trees were like the tree in Figure 11.5a, then every equivalence class would have
1
2n! elements, and the number of unlabeled trees would be the quotient nn−2/(12n!). If instead
all n-vertex trees were like the tree in Figure 11.5b, then every equivalence class would have n
elements, and the number of unlabeled trees would be nn−2

n or nn−3.

In reality, neither of these extremes is the case. The truth is somewhere in the middle; but
it is more like the first answer than the second. Why? Well, the reason that there are very
few different trees isomorphic to the star in Figure 11.5b is that the star graph has a lot of
symmetry. Most large trees are not nearly as symmetric, so most equivalence classe are pretty
large.

A result known as Stirling’s formula says that, very approximately, n! grows like (ne)
n, where

e ≈ 2.718 is Euler’s number.1 If we plug this into the quotient nn−2/(12n!), we get an estimate
of 2en/n2 for the number of unlabeled trees. This is not the true growth rate, but it is the right
type of growth: the number of unlabeled trees really does grow exponentially. That growth rate
was first precisely analyzed in 1937 by Hungarian-American mathematician George Pólya, who
described it as an exponential cn with c ≈ 2.9557, divided by a polynomial factor.

No exact formula is known. In the Online Encyclopedia of Integer Sequences, the number of
n-vertex unlabeled trees can be found in one of the very first sequences: sequence A000055 [8].
The first few terms are

1, 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, . . .

1See the second problem at the end of this chapter if you want to know more digits of this constant, but prepare
to do some work, first.

39

The initial 1’s in this sequence correspond to n = 02 through n = 3, where only one n-vertex
tree is possible. (For n = 4, we have two options: the 4-vertex path, and the 4-vertex star.)

11.6 Practice problems

1. Find the trees with the following Prüfer codes:

a) (1, 1, 1, 1, 1).

b) (1, 2, 3, 4, 5, 6).

c) (3, 1, 4, 1, 5, 9, 2).

2. Find the Prüfer codes of the following trees:

98

6

3 2

5

1

4

7
5 3 6 4

1 2 7

8

3

4
2

6

8

9
1

5

7

(One of these Prüfer codes gives you my birth date. Another is the first few digits of
Euler’s number e. Another tells you the phone number to call to reach Ghostbusters.)

3. Find all 16 trees with vertices {1, 2, 3, 4}. (Prüfer codes are not very useful here.)

4. What is the Prüfer code of the tree in Figure 11.5a, and what is the general form of a
Prüfer code for a tree isomorphic to this one?

5. What is the Prüfer code of the tree in Figure 11.5b, and what is the general form of a
Prüfer code for a tree isomorphic to this one?

6. Use Prüfer codes and Proposition 11.4 to count:

a) The number of trees with vertex set {1, 2, . . . , n} in which vertex 1 has degree 3.

b) The number of trees with vertex set {1, 2, . . . , n} in which vertex 1 has degree n− 2.

c) The number of trees with vertex set {1, 2, . . . , n} in which all vertices except vertex
1 and 2 have degree 1.

For parts (b) and (c), think about how you would count them without using Prüfer codes.

7. Use Corollary 11.5 to find the average number of leaves in an n-vertex labeled tree.

8. Prove that if a tree has maximum degree d, then it has at least d leaves:

a) Using Prüfer codes and Proposition 11.4.

b) Using ideas from the previous chapter.

2I actually disagree with the OEIS on the initial value; I do not believe there is a 0-vertex tree. Even if we allow
0-vertex graphs to be exist, they should surely have 0 edges, but an n-vertex tree should have n − 1 edges.
My opinion, which does not really affect anything but definitions and initial terms, is that the 0-vertex graph
exists but is not connected.

40

9. Each possible edge e of the complete graph with vertex set {1, 2, . . . , n} is contained in
f(n) of the nn−2 trees with this set of vertices. By symmetry, f(n) is the same for any
edge.

a) Determine and prove a formula for f(n).

b) Let K−
n be the complete graph with a single edge deleted. (Up to isomorphism, it

doesn’t matter which edge.) Find the number of spanning trees that K−
n has, in

terms of n.

41

Bibliography

[1] Berkeley Math Circle. 7th Bay Area Mathematical Olympiad. 2005. url: https://www.
bamo.org/archives/examfiles/bamo2005examsol.pdf (visited on 09/23/2025).

[2] Carl Wilhelm Borchardt. “Über eine Interpolationsformel für eine Art symmetrischer Func-
tionen und über deren Anwendung”. In: Mathematische Abhandlungen der Königlichen
Akademie der Wissenschaften zu Berlin (1860), pp. 1–20. url: https://archive.org/
details/abhandlungenderk1860deut/page/n245.

[3] Arthur Cayley. “On the theory of the analytical forms called trees”. In: Philosophical
Magazine 13 (1857), pp. 172–176. url: https://rcin.org.pl/Content/173708/PDF/
WA35_185808_12807-3_art-45.pdf.

[4] Joseph B. Kruskal. “On factors with all degrees odd”. In: Graphs and Combinatorics 1
(1985), pp. 111–114. doi: 10.1007/BF02582935.

[5] Joseph B. Kruskal. “On the shortest spanning subtree of a graph and the traveling salesman
problem”. In: Proceedings of the American Mathematical Society 7.1 (1956), pp. 48–50. doi:
10.2307/2033241.

[6] P.C. Li and Michel Toulouse. “Maximum leaf spanning tree problem for grid graphs”. In:
Journal of Combinatorial Mathematics and Combinatorial Computing 73 (2010), p. 181.
url: https://combinatorialpress.com/jcmcc-articles/volume-073/maximum-leaf-
spanning-tree-problem-for-grid-graphs/.

[7] Heinz Prüfer. “Neuer Beweis eines Satzes über Permutationen”. In: Arch. Math. Phys 27
(1918), pp. 742–744.

[8] N.J.A. Sloane. Sequence A001292 in the On-Line Encyclopedia of Integer Sequences. url:
https://oeis.org/A000055 (visited on 09/23/2025).

42

https://www.bamo.org/archives/examfiles/bamo2005examsol.pdf
https://www.bamo.org/archives/examfiles/bamo2005examsol.pdf
https://archive.org/details/abhandlungenderk1860deut/page/n245
https://archive.org/details/abhandlungenderk1860deut/page/n245
https://rcin.org.pl/Content/173708/PDF/WA35_185808_12807-3_art-45.pdf
https://rcin.org.pl/Content/173708/PDF/WA35_185808_12807-3_art-45.pdf
https://doi.org/10.1007/BF02582935
https://doi.org/10.2307/2033241
https://combinatorialpress.com/jcmcc-articles/volume-073/maximum-leaf-spanning-tree-problem-for-grid-graphs/
https://combinatorialpress.com/jcmcc-articles/volume-073/maximum-leaf-spanning-tree-problem-for-grid-graphs/
https://oeis.org/A000055

	About this document
	Trees and spanning trees
	Spanning trees
	Bridges
	Properties of trees
	Minimum-cost spanning trees
	Practice problems

	Properties of trees
	A square garden
	Counting edges in trees
	From trees to forests
	Leaves in trees
	Induction on trees
	Practice problems

	Cayley's formula
	How to count graphs
	Trees and deletion sequences
	Prüfer codes
	Working with Prüfer codes
	Counting unlabeled trees
	Practice problems

	Bibliography

