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About this document

This is Part II of Start Doing Graph Theory. It covers the properties of degree sequences in
graph theory, and some of the things we can learn from them, along with an introduction to
multigraphs and directed graphs.

Right now, only parts I through IV are ready. When the book is finished, I plan to provide a
variety of ways to read it: a single PDF of the whole book, several smaller PDFs like this one,
and eventually an HTML version. For now, think of this document as a preview!

This document is licensed under a Creative Commons Attribution-ShareAlike 4.0 International
License: see https://creativecommons.org/licenses/by-sa/4.0/ for more information.
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5 Regular graphs

The purpose of this chapter

This chapter introduces the graphic sequence problem, which we will look at in more detail in
Chapter 6. If your goal is to become more comfortable with proof-writing in graph theory, then
the proof of Theorem 5.1 is worth reading with additional care: it is our first existence proof,
where our goal is not to prove something about all graphs of some time, but to prove that a
graph satisfying a certain condition exists.

This is always a difficult kind of proof to read, since constructions often feel highly specific
and unmotivated when you first encounter them. You should, first of all, keep in mind that
alternate proofs of Theorem 5.1 exist which present completely different constructions! The
best way to learn would be to skip the proof of the theorem at first reading and to try to find
your own direction by looking at small examples and trying to generalize—but that is much
harder. Construction proofs will get easier with more experience, though, after you’ve seen
many different ideas that you can borrow from.

In this chapter, you might also notice a design decision of mine: I chose not to have a chapter
introducing many “boring” definitions like those of graph unions and graph complements, but
to wait to give them until we had a problem that would motivate them. Similarly, there are
many notable graph families, which I have only presented as needed.

Aside from these definitions, much of the second half of this chapter is skippable in that it’s
not a necessary prerequisite for what comes next; I have tried to give a general feeling of the
variety of graphs that are out there, and the ways we can think about classifying them.

5.1 Degree sequences

To state the graphic sequence problem, we need some definitions first.

Definition 5.1. If G is a graph, the degree sequence of G is a sequence of numbers that
gives all the degrees of all the vertices of G.

Despite the word “sequence”, these don’t come in any particular order, because the vertices of
a graph don’t have a particular order. (There might be a natural order you’re tempted to use
based on the way we drew a graph, but we don’t want the properties of graphs to depend on
how we draw them!) It would have been more reasonable to talk about the “degree multiset”
of a graph: a multiset keeps track of how often its elements appear, but not their order, which
is exactly what we want here.
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1 4 4 3

1 0 3 2

Figure 5.1: An 8-vertex graph labeled with the degrees of its vertices

Instead, the convention is to write the degree sequence of a graph in descending order.1 We do
this to avoid the temptation of looking for meaning in the order of the numbers, and because
it will be convenient for working with the degree sequence. For example, we would say that
Figure 5.1 shows a graph with degree sequence 4, 4, 3, 3, 2, 1, 1, 0.

It is a relatively quick and painless process to examine a graph, count the number of lines poking
out of each point, and in doing so compute the degree sequence. For this reason, we often look
to the degree sequence first to try to learn about a graph; even if it does not always tell us what
we want to know, it is a quick way to start! This is, for example, a good way to determine if
two graphs are isomorphic.

The inverse problem is harder. That is the problem of taking a sequence of nonnegative in-
tegers in descending order, and determining if it is the degree sequence of some graph. Some
terminology:

Definition 5.2. A sequence d1, d2, . . . , dn where d1 ≥ d2 ≥ · · · ≥ dn is a graphic sequence if
there exists a graph G with that degree sequence: a graph G with V (G) = {x1, x2, . . . , xn} such
that deg(xi) = di for i = 1, 2, . . . , n.

Thus, the inverse problem is to ask: how do we tell when a sequence of numbers is a graphic
sequence? For example, 4, 4, 3, 3, 2, 1, 1, 0 is a graphic sequence, and the graph in Figure 5.1 is
a proof of this. (There are other graphs with the same degree sequence, too.)

Here are a few quick puzzles about graphic sequences that illustrate some things you already
know about them, and some things you have yet to learn.

Problem 5.1. Is the sequence 8, 8, 8, 8, 8, 8, 8, 8 graphic?

Answer to Problem 5.1. No: the terms are too big. This sequence would like to be the degree
sequence of an 8-vertex graph, but the largest possible degree in an 8-vertex graph is 7, achieved
when a vertex is adjacent to all 7 other vertices.

Problem 5.2. Is the sequence 5, 5, 5, 3, 3, 3, 1, 1, 1 graphic?

Answer to Problem 5.2. No: this sequence violates Corollary 4.2 to the Handshake Lemma. A
graph cannot have an odd number of vertices with an odd degree.

1We must allow for the possibility of ties. By convention, when mathematicians call something a “decreasing
sequence”, it means that every term is strictly less than the previous, which is generally false for degree
sequences; when two consecutive terms can be equal, this is called a “non-increasing sequence.” This is
awkward, so I will say that a sequence in “descending order”, which does not have a standard meaning, may
also contain equal terms.
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Problem 5.3. Is the sequence 4, 3, 2, 1, 0 graphic?

Answer to Problem 5.3. No: suppose for contradiction that G is a graph with degree sequence
4, 3, 2, 1, 0. Let x be the vertex with degree 4 and let y be the vertex with degree 0. Then x is
adjacent to all 4 other vertices, so in particular xy ∈ E(G); however, y is adjacent to 0 other
vertices, so in particular xy /∈ E(G). Therefore it is impossible for G to exist.

Question: How do the solutions to Problem 5.1 and Problem 5.2 generalize?

Answer: They give us two rules: in an n-term graphic sequence, the values must
be integers between 0 and n− 1, and an even number of them must be
odd.

Question: Are these two rules sufficient?

Answer: No, and that’s why Problem 5.3 is there. It’s a 5-term sequence in which
the values are integers between 0 and 4, and 2 of them are odd; however,
the sequence is not graphic.

We should think of the rules we deduced from the solutions to Problem 5.1 and Problem 5.2
as simple preliminary tests we can carry out before thinking about a sequence very hard. If a
sequence fails one of the two preliminary tests, it’s definitely not graphic, but even if it passes
both preliminary tests, it still might not be graphic. We will eventually develop a comprehensive
theory of graphic sequences, which will encompass the argument we used to solve Problem 5.3
as a special case.

5.2 Regular graphs

As a special case, we can consider the graphic sequence problem for a sequence in which all
terms are equal:

Definition 5.3. A regular graph is a graph in which every vertex has the same degree. More
specifically, an r-regular graph is a graph in which every vertex has degree r. The degree
sequence of such a graph is r, r, . . . , r.

Making a definition does not guarantee that any object satisfying the definition exists. So when
do regular graphs exist?

Question: Suppose the sequence r, r, . . . , r with n terms is graphic. What do our
two simple preliminary tests tell us about the relationship between r
and n?

Answer: We must have 0 ≤ r ≤ n− 1, and if r is odd, then n must be even.
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Figure 5.2: Several examples of ingredient graphs

In fact, the existence problem for regular graphs is much easier than the general case: these are
the only two conditions!

Theorem 5.1. An r-regular graph on n vertices exists whenever 0 ≤ r ≤ n−1 and at least one
of r or n is even.

Proof. To prove that an r-regular graph on n vertices exists, we need to construct one.

For most values of r and n, there are many many options available. We just have to show how
to construct one of them. The hard part about this proof is that we have to give a general rule
based on the values of r and n. (For specific values of r and n, the proof would be very short
and just look like “here, look at the graph I drew.”) Like a cooking recipe, our proof has to
adjust to the size of the output we want to produce.

Our recipe for constructing an r-regular graph on n vertices begins by constructing several
“ingredient graphs”. These will all have n vertices called 1, 2, . . . , n, and we will draw them
spaced evenly around a circle.

The ingredient graph In,k is defined2 to be the graph with an edge between every pair
of vertices that are “k steps apart” around the circle. Formally, it has an edge ij whenever
i− j ≡ ±k (mod n).3 Figure 5.2 shows several examples.

Many of the ingredient graphs In,k are isomorphic to the cycle graph Cn: this is true, for
instance, of I8,1 (Figure 5.2a) and I8,3 (Figure 5.2c). We do care about the difference between
I8,1 and I8,3, though, even though they’re isomorphic: we will want to combine our ingredients,
so the exact edge sets matter for our proof.

In other cases, such as I8,2 (Figure 5.2b), In,k has several connected components isomorphic to
cycle graphs. Since all cycle graphs are 2-regular, In,k will usually also end up being 2-regular,
whether it has one component or many. This can be seen from the definition: vertex i is adjacent
to vertex j when j ≡ i+ k (mod n) and when j ≡ i− k (mod n), giving it two neighbors.

The only exceptional cases occur when n is even and k = n/2, such as for example with I8,4
(Figure 5.2d). Here, the vertex k steps around the circle from vertex i is the same no matter

2Defined only by me, as far as I know. Unlike most definitions in this textbook, the term “ingredient graph” is
not standard terminology.

3If you’re unfamiliar with modular arithmetic, this notation—which I will use in this textbook almost always to
define graphs with rotational symmetry, as is the cases here—just means that our arithmetic wraps around,
so we treat n+ 1 the same as 1, n+ 2 the same as 2, and so on.
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which way we go: i+k ≡ i−k (mod n). So each vertex only has 1 neighbor, and the ingredient
graph In,n/2 is 1-regular.

There is one more observation to make about the ingredient graphs. For any two vertices i and
j in the set {1, 2, . . . , n}, there is exactly one graph In,k containing the edge ij. This value of k
is equal to either |i− j| or to n− |i− j|, whichever is smaller: the number of steps around the
circle from i to j in the direction where that number of steps is shorter.

This last observation means that we can build an r-regular graph for any r by taking the union
of several ingredient graphs. What do we mean by the “union” of two graphs? In this case, we’re
considering graphs with the same set of vertices. For two graphs G and H with V (G) = V (H),
we define the union, denoted G∪H, to be the graph with the same set of vertices as G and H
had, and all edges that are contained in either G or H. That is, V (G ∪H) = V (G) = V (H),
and E(G ∪H) = E(G) ∪ E(H).

Now that we’ve laid out the ingredients for our recipe, here is the recipe itself: the rule by which
we can get an r-regular graph on n vertices. We assume the two conditions in the statement of
Theorem 5.1: 0 ≤ r ≤ n− 1, and if r is odd, then n is even.

• If r is even, take the union In,1 ∪ In,2 ∪ · · · ∪ In,r/2.

For each i, vertex i has 2 incident edges in each of the r/2 graphs in the union, and all of
these incident edges are different. In total, deg(i) = 2 + 2 + · · ·+ 2 = 2 · r

2 = r.

• If r is odd and n is even, take the union In,1 ∪ In,2 ∪ · · · ∪ In,(r−1)/2 ∪ In,n/2.

For each i, vertex i has 2 incident edges in the first (r − 1)/2 graphs in the union, and
1 incident edge in In,n/2. Again, all of these edges are different. In total, deg(i) =

2 + 2 + · · ·+ 2 + 1 = 2 · r−1
2 + 1 = r.

When r = 0, there’s nothing to take the union of. We must treat this as a special case: take a
graph which still has vertices 1, 2, . . . , n, but no edges at all. This graph is 0-regular!

In all cases, we obtain an n-vertex graph in which every vertex has degree r, proving the
theorem.

Question: What graph do we end up constructing when r = 1 (and n is even)?

Answer: Here, r−1
2 is 0, so we don’t include any of the 2-regular ingredient graphs,

and only take In,n/2.

Question: What graph do we end up constructing when r = n− 1?

Answer: Here, we end up taking the union of all the ingredient graphs we have,
and get a result isomorphic to the complete graph Kn.

The graphs we construct in the proof of this theorem have a special name. (Unlike the “ingre-
dient graphs” In,k used in the proof itself, this notation is at least a little bit standard.)

Definition 5.4. The r-regular graph on n vertices constructed in the proof of the Theorem 5.1
is called the Harary graph, denoted Hn,r.
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Figure 5.3: Three different(?) 1-regular graphs with vertex set {1, 2, 3, 4}

(a) C8 (b) C4 ⊔ C4 (c) C3 ⊔ C5

Figure 5.4: Three non-isomorphic 2-regular graphs with 8 vertices

5.3 How many regular graphs are there?

Though Theorem 5.1 proves the existence of r-regular, n-vertex graphs with all compatible
values of n and r, we’ve only constructed one graph for each pair (n, r). How many possibilities
exist in total? Let’s start with some small values of r and see how the story unfolds.

When r = 0, every vertex is an isolated vertex: it has degree 0. There cannot be any edges.
For any possible vertex set, there is exactly one graph, sometimes called the empty graph.

When r = 1, whether we believe in one possibility or multiple possibilities depends on how we
count. You see, suppose x is a vertex in a 1-regular graph. Then x has only one neighbor,
which we can call y. Vertex y also has only one neighbor, and we already know what it is: x.
Thus, x and y form a 2-vertex connected component with each other and nothing else, and the
entire graph is split up into n/2 such components. (A 1-regular graph, as we already know, is
only possible when n is even, so n/2 is an integer.)

The counting difficulty comes in when we ask how many ways there are to choose these com-
ponents. In one sense, there are many options: Figure 5.3 shows three different possibilities in
just the 4-vertex case, and the total number of possibilities grows quickly. However, they are
all isomorphic to each other!

To capture this sentiment, we might say that there is only one n-vertex 1-regular graph up to
isomorphism. Alternatively, we can say that there are many labeled 1-regular graphs on n
vertices when n is even (for a fixed vertex set such as {1, 2, . . . , n}) but a unique unlabeled
graph.

Moving on, let’s consider what happens when r = 2. We know by Theorem 4.4 that such a
graph contains a cycle. In fact, in a k-vertex cycle x0, x1, x2, . . . , xk−1, x0, each vertex has 2
neighbors in that cycle already, so it can have no other neighbors in the graph: the vertices of
the cycle form a connected component!

The difference between the 1-regular and 2-regular case is that the connected components can
vary in size. Figure 5.4 shows three non-isomorphic possibilities for an 8-vertex 2-regular graph:
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it could be isomorphic C8 (Figure 5.4a), or the union of two copies of C4 (Figure 5.4b), or the
union of copies of C3 and C5 (Figure 5.4c).

By the way, what is this “union”? It is not union of two graphs with the same vertex set, as it
was in the proof of Theorem 5.1. (In that sense, C4 ∪ C4 would just be C4.) Rather, we want
to take a disjoint union, in which there is no overlap between the vertices coming from one
C4 and the vertices coming from the other.

Here are the complete definitions of the two notions of union that we’ve seen in this chapter:

Definition 5.5. If G and H are two graphs, then their union G ∪H is the graph with vertex
set V (G) ∪ V (H) and edge set E(G) ∪ E(H).

Definition 5.6. The disjoint union of G and H, written G ⊔H, is a union G′ ∪H ′ where
G′ and H ′ are isomorphic to G and H but V (G′) ∩ V (H ′) = ∅.

Definition 5.6 only tells us what G ⊔ H is up to isomorphism. It’s possible to come up with
a specific rule for how G′ and H ′ are created from G and H, but usually the notation is used
when the exact vertex set of G ⊔H does not matter.

To return to our regular graphs, we can conclude that all 2-regular graphs on n vertices are
isomorphic to a disjoint union of one or more cycle graphs. To put it another way: up to
isomorphism, the only connected 2-regular graph on n vertices is the cycle graph Cn.

Once r ≥ 3, any hope of classifying the r-regular graphs on n vertices goes out the window.
Even when r = 3, there are many examples. We’ve seen the Wagner graph and the cube graph;
by chance, the Harary graph H8,3 is isomorphic to the Wagner graph. Both of these examples
have a lot of symmetry, and you would be forgiven for thinking that regular graphs should be
highly symmetric. However, there are many 3-regular graphs, most of which do not look like
anything in particular.

The Online Encyclopedia of Integer Sequences (OEIS) lists integer sequences with notable math-
ematical properties. Entry A2851 of the OEIS (https://oeis.org/A2851) gives the number
of connected 3-regular graphs on 2n vertices, up to isomorphism. I cite an online encyclopedia
rather than give a formula because there is no clean formula for the entries of this sequence.
However, you can observe that they grow rather quickly from the first few entries:

1, 0, 1, 2, 5, 19, 85, 509, 4060, 41301, . . .

You can probably guess that the story for 4-regular graphs, 5-regular graphs, and so on is very
similar. We only regain any semblance of order once r gets very close to n. The reason for this
is the operation on graphs known as the complement:

Definition 5.7. If G is a graph, then the complement of G, denoted G, is the graph with the
same vertex set as G, and exactly the edges between those vertices which G does not have.

10
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(a) C8 (b) C8 (c) K5 (d) K5

Figure 5.5: Some graphs and their complements

Figure 5.5 shows some examples of graphs and their complements, such as the cycle graph C8

(Figure 5.5a) and its complement C8 (Figure 5.5b).

If G is an n-vertex graph and a vertex x has degree degG(x) = d, then in the complement G,
vertex x has degree degG(x) = n − 1 − d. (There are n − 1 other vertices in V (G) = V (G),
and all of them contribute to x’s degree either in G or in G.) In particular, if G is an r-regular
n-vertex graph, then G is an (n− 1− r)-regular n-vertex graph.

This lets us classify the (n − 3)-regular n-vertex graphs as the complements of the 2-regular
n-vertex graphs. The (n − 2)-regular n-vertex graphs are all complements of the 1-regular n-
vertex graphs, which means that up to isomorphism, only one such graph exists for each value
of n. Finally, the only possible (n− 1)-regular n-vertex graph is the complete graph Kn.

Question: What is the complement of Kn?

Answer: It is the empty graph, which was our 0-regular example. (In Figure 5.5c
and Figure 5.5d, you can see this for n = 5.) For this reason, the empty
graph does not have its own notation: it’s usually just written Kn.

Question: If G has n vertices and m edges, how many vertices and edges does G
have?

Answer: G still has n vertices, and it has
(
n
2

)
−m edges: all

(
n
2

)
possible edges

between its vertices, except for the m that were present in G.

5.4 The Petersen graph and the Kneser graphs

There is a well-known 3-regular graph that, so far, we have only seen in passing in an exercise
at the end of a chapter: the Petersen graph.

The Petersen graph is notable in graph theory for many reasons. In this textbook, we will see
it several times in its role of providing a small counterexample to several plausible-sounding
conjectures in graph theory. There are also several classification theorems (which we will not
see) in which it plays a central role.

Two diagrams of the Petersen graph are shown in Figure 5.6, showing some of the symmetry it
has: one with 5-fold and one with 3-fold rotational symmetry. In fact, the Petersen graph has
much more symmetry than that, which can be seen from its combinatorial definition:
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Figure 5.6: Two diagrams of the Petersen graph

Definition 5.8. The Petersen graph is the graph with vertex set

{12, 13, 14, 15, 23, 24, 25, 34, 35, 45}

consisting of all unordered pairs of elements of {1, 2, 3, 4, 5}, and an edge between two vertices
whenever they have no elements of {1, 2, 3, 4, 5} in common. (For example, vertex 12 is adjacent
to vertices 34, 35, and 45.)

This definition has a much greater degree of symmetry than either of the diagrams! For any
permutation of the set {1, 2, 3, 4, 5}, we can relabel the vertices of the Petersen graph according
to that permutation; this will not change which vertices have no elements of {1, 2, 3, 4, 5} in
common, so it is an automorphism of the Petersen graph. All 5! = 120 automorphisms of the
Petersen graph can be described in this way.

We can generalize this definition: the Petersen graph is part of an infinite family of regular,
highly symmetric graphs known as the Kneser graphs. For all integers n and k with 0 ≤ k ≤ n,
the vertices of the Kneser graph K(n, k) are the k-element subsets of the set {1, 2, . . . , n}.
As in the definition of the Petersen graph, two vertices of K(n, k) are adjacent if they have
no elements in common. (The definition is only interesting when n ≥ 2k; otherwise, any two
k-element subsets of {1, 2, . . . , n} are guaranteed to overlap.)

Question: How many vertices does K(n, k) have, as a function of n and k?

Answer: There are
(
n
k

)
vertices: the number of ways to choose k unordered ele-

ments of {1, 2, . . . , n} without repetition.

Question: What is the degree of an arbitrary vertex of K(n, k)?

Answer: A vertex X has
(
n−k
k

)
neighbors: the k-element subsets of the set

{1, 2, . . . , n} −X.

This explains why the Kneser graphs are always regular. For the same reason as the Petersen
graph, they have many automorphisms. Though the Petersen graph is by far the most widely
encountered of the Kneser graphs, they all have applications to the combinatorics of set families,
due to their definition via subsets of {1, 2, . . . , n}.

12



5.5 Practice problems

1. Let’s take a closer look at the Harary graphs and their ingredient graphs.

a) Draw a diagram of H6,0 through H6,5.

b) For which n and k is the ingredient graph In,k isomorphic to Cn? (For an extra
challenge, find an explicit automorphism φ : V (Cn) → V (In,k).)

c) For which n and r is the Harary graph Hn,r connected? (It might be more straight-
forward to answer the opposite question: when is Hn,r not connected?)

2. If n and r are both odd, then an r-regular graph on n vertices does not exist. However,
Frank Harary (the inventor, or possibly discoverer, of Harary graphs) defined a Harary
graph Hn,r in those cases as well. This is a graph on n vertices where n− 1 of them have
degree r, and one has degree r + 1.

We can construct this using a slight modification of the construction Theorem 5.1. A
new ingredient graph In,n/2 is required, which is nearly 1-regular, but has one vertex of
degree 2. For example, here is the “ingredient” graph G9,4.5 (on the left), next to a picture
of the old “ingredient” graph G9,4 that it replaces (on the right):

a) In general, we define In,n/2 for odd n to be the graph with vertices {1, 2, . . . , n} where

vertex i is adjacent to vertex i+ n−1
2 for i = 1, 2, . . . , n+1

2 .

Prove that In,n/2 is a subgraph of In,(n−1)/2 whose degree sequence is 2, 1, 1, . . . , 1.

b) Use this as an additional ingredient to prove that when r and n are both odd, a
Harary graph Hn,r exists: a graph on n vertices where n− 1 of them have degree r,
and one has degree r + 1.

3. Here is a fragment of an alternate proof of the r = 3 case of Theorem 5.1.

. . . assume that a 3-regular graph H on n − 4 vertices exists. Then, we can create a 3-
regular graph G on n vertices, just by adding a new connected component to H: four new
vertices adjacent to each other and to no other vertices . . .

What kind of a proof is this? What else do we need to do to finish the proof of Theorem 5.1
using this idea?

4. For each diagram in Figure 5.6, show how to label the vertices with elements of the set
{12, 13, . . . , 45} (the vertex set of the Petersen graph) so that two vertices are adjacent in
the diagram if and only if their labels have no digit in common.

5. a) Prove that the Kneser graph K(n, k) is connected when n > 2k. (With a few excep-
tions, it is not connected when n ≤ 2k; what are the exceptions?)

b) Find and prove a similar condition that determines when K(n, k) has diameter 2:
when the maximum distance between any two vertices of K(n, k) is 2.
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6 Graphic sequences

The purpose of this chapter

Most graph theory textbooks present the graphic sequence algorithm differently, by working
with numerical sequences rather than directly with graphs. In my opinion, that makes the
problem harder and more boring, and takes away class time from discussing edge swaps and
the ideas in the proof of Theorem 6.2.

I think that Problem 6.1 and its solution for 8 people is a good way to motivate the graphic
sequence algorithm. The proof of Proposition 6.1 could be skipped in a graph theory course
covering this material, but I felt that I had to include it to avoid leaving the problem without
a solution.

6.1 An unusual party

Let me tell you a story.1 One time, I was at a very large party—there were 100 people there!
Not everybody knew each other, of course. In fact, each person at the party knew a different
number of people. In addition, I—

“—That can’t be right!” you interrupt. “You’re saying that the graph which represents who
knew each other at the party had the degree sequence 99, 98, 97, . . . , 2, 1, 0? But that’s not a
graphic sequence!”

Question: Why isn’t this sequence graphic?

Answer: The vertex of degree 99 is adjacent to every other vertex, but the vertex
of degree 0 is adjacent to none of the other vertices, and these facts
contradict each other.

Oh, sorry. My mistake. Let me try again.

Problem 6.1. One time, I was at a very large party—there were 100 people there! Not everybody
knew each other, of course. In fact, each person at the party knew a different number of people,
with one exception: I personally knew the same number of people as another guest, named
Masha. In addition, I can promise you that everyone at this party knew at least one other
person.

Now, given this information, can you tell me how many people I knew at the party? Also, can
you tell me whether Masha and I knew each other?

1In West’s Introduction to Graph Theory [6], a version of this story appears as “The Handshake Problem”.
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7(7) 6(6)

5(5)

4(4)

4(4)3(3)

2(2)

1(1)

(a) The initial problem

7(0) 6(5)

5(4)

4(3)

4(3)3(2)

2(1)

1(0)

(b) Step 1

7(0) 6(0)

5(3)

4(2)

4(2)3(1)

2(0)

1(0)

(c) Step 2

7(0) 6(0)

5(0)

4(1)

4(1)3(0)

2(0)

1(0)

(d) Step 3

7(0) 6(0)

5(0)

4(0)

4(0)3(0)

2(0)

1(0)

(e) Step 4

Figure 6.1: Reconstructing the 8-person party

Before we solve this problem, let’s consider a smaller case: an 8-person party and its graph of
who knows whom. In this graph, the vertex degrees are 7, 6, 5, 4, 3, 2, 1, but with one of these
duplicated. We can’t duplicate an odd number, because then the sum of degrees would violate
the Handshake Lemma. So we must duplicate the 6, the 4, and the 2. I can tell you the correct
option: duplicating the 4 is the only choice that will work.

If the degree sequence is 7, 6, 5, 4, 4, 3, 2, 1, can we reconstruct the graph? Let me show you a
graphic way of thinking about it. In Figure 6.1a, I have drawn the 8 vertices, with labels of the
form a(b). These indicate a vertex that needs a neighbors, with b of them left to assign.

For one of these vertices, we can immediately assign the neighbors. The vertex labeled 7(7)
needs to be adjacent to every other vertex, so we can draw all of those edges, as shown in
Figure 6.1b. Now its label changes to 7(0), and we mark it in grey to show that it’s inactive.
For all other vertices, the second number decreases by 1, and one more vertex also becomes
inactive: the vertex labeled 1(0). The inactive vertices cannot receive any more edges.

We can continue. The vertex labeled 6(5) needs 5 more neighbors, and there are only 5 other
active vertices, so it must be adjacent to all of them! We add all of those edges in Figure 6.1c.
Now this vertex gets the new label 6(0) and goes inactive. For all other active vertices, the
second number decreases by 1, and the vertex now labeled 2(0) also becomes inactive.

Two more steps solve the problem entirely. When we process the vertex labeled 5(3) in Fig-
ure 6.1c, we arrive at the diagram in Figure 6.1d. At that point, we only have two active vertices
left, and each one wants 1 more neighbor, so we make them adjacent, arriving at the diagram
in Figure 6.1e. Now we know all the edges of the graph.

We will return to the ideas in this solution very soon. For now, let me make one more obser-
vation: the “leftover” degrees of the active vertices in Figure 6.1b are 5, 4, 3, 3, 2, 1, which is a
6-vertex version of the same problem. This suggests a solution to Problem 6.1 by induction.
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Proposition 6.1. For all n ≥ 1, up to isomorphism, there is a unique 2n-vertex graph which
contains a vertex of every degree 1, 2, . . . , 2n− 1. In that graph, there are two vertices of degree
n, and they are adjacent.

Proof. We induct on n. When n = 1, the graph we are looking for is a graph with 2 vertices,
at least one of which has degree 1. There most be an edge between the 2 vertices, so we get a
graph isomorphic to the path graph P2. In this graph, there are two vertices of degree 1, and
they are adjacent, completing the base case.

Next, for some n > 1, assume that the previous case of the proposition holds. That is, there is
a unique 2(n− 1)-vertex graph G which contains a vertex of degree 1, 2, . . . , 2n− 3. In G, there
are two vertices of degree n− 1, and they are adjacent.

Mimicking the way in which the 6-person party sits inside the 8-person party in Figure 6.1b, we
extend G to a 2n-vertex graph H by adding two vertices x and y; we make x adjacent to y and
to all vertices of G, and we make y adjacent only x. Here, degH(x) = 2n− 1 and degH(y) = 1;
for all vertices z ∈ V (G), we have degH(z) = degG(z) + 1 (because we added the edge xz) and
so the vertices of G fill in the degrees 2, 3, . . . , 2n − 2. The two vertices of degree n − 1 in G
become vertices of degree n in H, and they are adjacent.

This proves that the situation in Proposition 6.1 is possible, but not that it is unique. To prove
it is unique, let H ′ be any 2n-vertex graph that satisfies the conditions. Let x be a vertex of
degree 2n − 1 in H ′, and let y be a vertex of degree 1 in H ′. Then x must be adjacent to all
2n− 1 other vertices (including y), which means y is only adjacent to x. Let G′ = H ′ − x− y;
then in G′, every degree k between 1 and 2n− 3 is present, because degree k+1 is present in H
on a vertex that’s neither x nor y. Since G′ satisfies the conditions in the proposition, it must
be isomorphic to the graph G in the previous paragraph, which forces H ′ to be isomorphic to
the graph H in the previous paragraph.

Question: How do we know every isomorphism between G and G′ extends to an
isomorphism between H and H ′?

Answer: To extend an isomorphism φ : V (G) → V (G′), just define φ(x) = x and
φ(y) = y. Since in both H and H ′, x is adjacent to every vertex and
y is adjacent only to x, the extended φ is guaranteed to preserve the
edges out of x and y.

This proves uniqueness, which completes the induction step; by induction, the graph exists and
is unique up to isomorphism for all n.

In particular, the answer to Problem 6.1 (the n = 50 case of Proposition 6.1) is that Masha and
I both knew 50 people at the party, and we did know each other.
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6.2 A graphic sequence algorithm

The reconstruction in Figure 6.1 is only possible for very special degree sequences. Our decision
at each step was forced, and the reason it was forced is the uniqueness result in Proposition 6.1.
Most degree sequences do not have a corresponding uniqueness result, in which case, life is more
complicated.

What do we do if we’re faced with a diagram like one of the ones in Figure 6.1, but there are
no forced deductions to make? It turns out that there’s still something we can do. It will feel
like making a lucky guess. Later in this chapter, in Theorem 6.2, we will prove that the guess
is always justified, at least in one sense. Before we do that, though, let me explain the guess
and why it is at least reasonable.

My reasoning is this: in Figure 6.1, we were always living life on the edge. The highest-degree
vertex always just barely had enough edges we could place, and that’s why the result was unique.
We would like our graphs to be as little like that, actually: we want to avoid having vertices
which need many edges. We also want to avoid creating too many inactive vertices (which don’t
need any more edges) too quickly.

Putting these together, which vertex should we deal with next, at each step? It should be the
vertex with the highest remaining degree. Which neighbors should we give it, if we have the
choice? It should be the other vertices with the highest remaining degree—this ensures those
vertices need fewer edges later, and also avoids creating inactive vertices too early.

Now, let me present an algorithm which makes all these ideas formal and precise.

Given a sequence of nonnegative integers d1, d2, . . . , dn, our goal is to test if the sequence is
graphic, and if it is, to construct a graph whose degree sequence is a1, a2, . . . , an. We begin our
construction with a graph G that has vertex set V (G) = {1, 2, . . . , n} and edge set E(G) = ∅:
no edges to start with. We will add edges to G as we go.

For all i = 1, . . . , n, we intend for vertex i to have degree di at the end. We also give vertex i
a demand representing how many more edges it needs to meet this goal. Initially, we set its
demand equal to di, but we will update the demand of i over the course of the algorithm. We
will call a vertex active if its demand is positive, and inactive if its demand is 0. In diagrams,
we will show vertex i with a label a(b) where a = di and b is the demand of i; we will also shade
inactive vertices in gray.

We repeat the algorithm below for as long as any active vertices remain. In each iteration, we
perform the following steps:

1. Pick a vertex x with the highest possible demand, breaking ties arbitrarily; let k be the
demand of x.

2. If there are fewer than k active vertices other than x, stop and declare that the sequence
is not graphic: we have failed to construct a graph with this sequence.

3. Otherwise, let S be a set of k active vertices, other than x, whose demand is as high as
possible (again, breaking ties arbitrarily).

4. Add the k edges xy for all y ∈ S to the graph G. Set the demand of x to 0 (making it
inactive) and decrease the demand of each vertex y ∈ S by 1.
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4(4) 4(4)

3(3)

3(3)

2(2)1(1)

1(1)

0(0)

(a) The initial problem

4(0) 4(3)

3(2)

3(2)

2(1)1(1)

1(1)

0(0)

(b) Step 1

4(0) 4(0)

3(1)

3(1)

2(0)1(1)

1(1)

0(0)

(c) Step 2

4(0) 4(0)

3(0)

3(1)

2(0)1(0)

1(1)

0(0)

(d) Step 3

4(0) 4(0)

3(0)

3(0)

2(0)1(0)

1(0)

0(0)

(e) Step 4

Figure 6.2: Finding a graph with degree sequence 4, 4, 3, 3, 2, 1, 1, 0

Once no more active vertices remain, we stop.

Question: What is the maximum number of iterations we will need?

Answer: Since at least one vertex becomes inactive at each step, we can be be
certain to stop after n iterations (in an n-vertex graph), though we may
stop sooner.

Question: How do we know that when we construct a graph at the end, it has the
right degree sequence?

Answer: At each step, the degree of each vertex increases by the same amount
that its demand decreases. Since the demand of vertex i decreases from
di to 0 by the end, its degree must have increased from 0 to di: the
value we wanted.

Let me show you two examples of this algorithm in action. After those examples, it will be more
clear what we do and do not need to prove in order to be certain that the algorithm works.

6.3 Two examples

First, let’s use the algorithm in the previous section to find a graph with the degree sequence
4, 4, 3, 3, 2, 1, 1, 0. (If you have a good memory, you can be certain that at least one such graph
exists, because we saw such a graph in Chapter 4.)
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5(5) 5(5)

5(5)

2(2)

2(2)1(1)

1(1)

1(1)

(a) The initial problem

5(0) 5(4)

5(4)

2(1)

2(1)1(0)

1(1)

1(1)

(b) Step 1

5(0) 5(0)

5(3)

2(0)

2(0)1(0)

1(0)

1(1)

(c) Step 2

Figure 6.3: Trying to find a graph with degree sequence 5, 5, 5, 2, 2, 1, 1, 1

We begin with an empty graph where the demand of each vertex is equal to the degree we want
it to have, as shown in Figure 6.2a. (The vertex with label 0(0) starts out inactive; it does not
affect the problem in any way.)

We choose one of the vertices with demand 4, and add edges to the 4 other vertices with the
highest demands (their demands are 4, 3, 3, and 2). The result is Figure 6.2b, with one fewer
active vertex.

Next, we can only choose the vertex with demand 3. The vertices that will become its remaining
neighbors must include the two vertices with demand 2, as well as one of the vertices with
demand 1; we arbitrarily choose it to be the vertex labeled 2(1). Adding the edges between
these vertices and decreasing demand accordingly, we obtain Figure 6.2c.

Here, all four remaining vertices are tied for highest demand: their demands are all 1. Our next
step will be to draw an edge between two of its vertices, and any of the ways to do that are fine.
Figure 6.2d shows one possible way we could proceed. Finally, in this graph, there are only two
active vertices, each with a demand of 1, and the only thing we can do is add an edge between
them. This produces the graph in Figure 6.2e. We can check that our algorithm produced the
correct result by checking every vertex to see that if it has label d(0), then it has degree d.

In this example, the sequence we started with was graphic; let’s consider an example where the
sequence we start with is not graphic. I will use the sequence 5, 5, 5, 2, 2, 1, 1, 1.

The first step, going from Figure 6.3a to Figure 6.3b, is completely normal. We pick one of the
vertices labeled 5(5) and join it to: the other two vetices labeled 5(5), the two vertices labeled
2(2), and one of the vertices labeled 1(1). Two vertices become inactive at this step, though if
we had made different choices, that number could have been even higher.

Next, we pick one of the vertices with demand 4, and draw 4 edges. One of them has to go to
the other vertex with demand 4, and the rest go to vertices with demand 1. There are several
ways to draw the edges, but all of them have a similar result to what is shown in Figure 6.3c.
Almost all of the vertices have become inactive.

We can no longer proceed! The highest demand in Figure 6.3c is 3, but we do not have 3 other
active vertices to connect to. So we declare that the sequence 5, 5, 5, 2, 2, 1, 1, 1 is not graphic,
and give up.

Now, where in this process do we need additional proof?

Nothing more is needed with the first example. In principle, once we have a graph with the
right degree sequence, we don’t care if we got it by a valid algorithm, or an invalid algorithm,
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or if it came to us in a dream: we have the answer, and we can check it! But we are in even
better shape than that: we’ve already shown that if the graphic sequence algorithm produces a
graph, then the graph it produces is guaranteed to have the right degree sequence.

The second example is iffier. In a sense, what we’re doing is similar to taking a crossword,
writing in a few random words without looking at the clues, then pointing to one of the crossing
entries and saying, “There’s no word with the letters Q, X, blank, O. So there must be a mistake
in the crossword.” Sure, there could be a mistake—or maybe we just made the wrong guesses?

For the specific degree sequence 5, 5, 5, 2, 2, 1, 1, 1, we could backtrack and see that if we had
made different choices, we’d be equally stuck. However, we don’t want a backtracking algorithm;
for a longer degree sequence, that would take forever. What we want is an argument that justifies
the specific choices our algorithm makes.

But what is it that we want? We don’t need to prove that a graph with such a degree sequence
must have the adjacencies we guess that it does. There could be multiple solutions, after all!
What we need to prove is that whenever solutions exist, our guess doesn’t eliminate them
all: that at least one of the solutions has the structure that the graphic sequence algorithm
expects.

6.4 The Havel–Hakimi theorem

The result we need to prove is known as the Havel–Hakimi theorem: named after Václav Havel,
who proved it in 1955 [4], and S. L. Hakimi, who rediscovered the corresponding algorithm in
1962 [3]. Before we prove it, we will restate it in a different way, closer to how it was presented
by Havel.

Theorem 6.2. Let G be a graph with vertex set x1, x2, . . . , xn such that deg(x1) ≥ deg(v2) ≥
· · · ≥ deg(xn). Let k = deg(x1) and let S = {x2, x3, . . . , xk+1}.

Then there is a graph H with V (H) = V (G) and with degH(xi) = degG(xi) for all i such that
the neighbors of x1 in H are precisely the vertices of S.

Question: How does Theorem 6.2 justify the correctness of our algorithm?

Answer: In the first step, x1 (up to tiebreaks) is exactly the vertex we will process,
and the edges from x1 to S are exactly the edges we add. Theorem 6.2
tells us that if there are any graphs G with the degree sequence we want,
then in particular there is a graph H in which the choices we made are
correct.

Question: That only applies to the first step—what about future steps?

Answer: In future steps, we can ignore the edges we’ve already placed and apply
Theorem 6.2 by using the demands as the vertex degrees. Again, the
theorem tells us that if there is any solution, then in particular there is
a solution consistent with the choices the algorithm makes.
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(a) The initial graph
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(c) . . . by edges 15 and 24.

Figure 6.4: An example of an edge swap

The advantage of stating Theorem 6.2 in this new form is that it describes a transformation: we
want to take graph G and transform it into another graph H, without changing the vertices or
their degrees, so that H has the adjacencies we want. We’ll do the transformation step by step,
so we need a way to make a minor change to a graph without changing its degree sequence.
This minor change is an operation called an edge swap.

Definition 6.1. Let G be a graph in which vw and xy are edges but vx and wy are not. Then
an edge swap in G is the operation of deleting edges vw and xy, then adding new edges vx
and wy.

Figure 6.4 shows an example of an edge swap. The affected vertices v, w, x, and y each lose an
edge and gain another edge; thus, the overall degree sequence does not change.

We begin by proving a lemma that essentially says, “we can always use edge swaps to make
progress toward what we want.” The lemma and its proof use the notation from the statement
of Theorem 6.2.

Lemma 6.3. If not all vertices of S are adjacent to x1, then we can perform an edge swap in
G to increase the number of vertices in S adjacent to x1.

Proof. Let xi ∈ S be some vertex not adjacent to x1. Since |S| = k, and deg(x1) = k, in
order for x1 to have k neighbors, it must also be adjacent to some vertex y /∈ S, as shown in
Figure 6.5a.2

We would like to perform an edge swap that replaces edge x1y (which we don’t need) by edge
x1xi (which we do need). To do this, we need to find a fourth vertex: a vertex z such that xi is
adjacent to z, but y is not. (In other words, we are looking for the picture shown in Figure 6.5b.)

Here is where the order of degrees in G comes in. Since the degrees of x1, x2, . . . , xn are in
descending order, we know in particular that the vertices in S have greater or equal degrees
than the vertices not in S (except for x1). In particular, deg(xi) ≥ deg(y). Moreover, y already
has one neighbor that xi does not have: the vertex x1.

2Unlike many diagrams in this book, which show you all the vertices and edges of a graph, the diagrams in
Figure 6.5 only show you a few vertices and edges: the ones relevant to the proof of Lemma 6.3. This is
common when presenting a proof, because if we want the argument to be fully general, we can’t just show
how it works on one specific graph.
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x1 xi
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no edge

(a) Vertices xi and y

S

. . .

x1 xi

y z

no edge

no edge

(b) Goal: find z

S

. . .

x1 xi

y z

(c) The key edge swap

Figure 6.5: The three steps in the proof of Lemma 6.3.

Therefore it is impossible for y to be adjacent to every neighbor of xi, and also to x1: then,
we’d have deg(xi) < deg(y). So we can find a neighbor z of xi such that y is not adjacent to z.

Now perform the edge swap which replaces x1y and xiz by x1xi and yz (as in Figure 6.5c).
After this switch, xi is adjacent to one more vertex of S.

Question: Figure 6.5b shows z outside the set S. Is it a problem if z ∈ S?

Answer: No: the argument is identical whether or not z ∈ S. (But this is an
example of how diagrams might be misleading, so it’s an important
question to ask yourself!)

It is important that xi ∈ S but y /∈ S because we want to compare
deg(xi) ≥ deg(y), but deg(z) is never compared to anything, so from
this point of view it doesn’t matter if z ∈ S.

It is also important that xi ∈ S but y /∈ S because we want the gain of
edge x1xi and the loss of edge x1y to represent progress. But edge x1z
is neither added nor removed by the edge swap, so from this point of
view we also don’t care if z ∈ S.

I put Lemma 6.3 first because from here, the proof of Theorem 6.2 is essentially just an appli-
cation of the lemma, together with the extremal principle. It is a good exercise to try to do
this yourself before reading ahead.

Proof of Theorem 6.2. Of all graphs with the same vertex set and vertex degrees as G, let H
be chosen to maximize the number of neighbors of x1 in S.

Then actually, all vertices of S must be adjacent to x1. If not, we could use Lemma 6.3 to
increase the number of neighbors of x1 in S. But H was chosen to have the largest possible
number of such neighbors, so this can’t happen.

Therefore H is exactly the graph needed to prove the theorem.

I should say that the graphic sequence algorithm we’ve described is also known as the Havel–
Hakimi algorithm, but it is commonly described in a different way that I consider less intuitive.
Instead of putting the demands on the vertices and drawing edges, we can think of the algorithm
as modifying a sequence d1 ≥ d2 ≥ · · · ≥ dn of the intended degrees. If k = d1, the highest
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degree, then the algorithm places edges from the first vertex to the k vertices after it. This
corresponds to an operation on sequences, turning d1, d2, . . . , dn into

d2 − 1, d3 − 1, . . . , dk+1 − 1︸ ︷︷ ︸
k terms

, dk+2, . . . , dn.

Repeating this operation eventually produces a sequence of all 0’s (in which case the original
sequence is graphic) or a sequence which is clearly not graphic (for example, because it contains
negative numbers).

6.5 More on degree sequences

We only used edge swaps in the proof of Theorem 6.2, but they have other applications. To
begin with, we can show the following theorem:

Theorem 6.4. If two graphs G and H have the same vertex set V , and degG(x) = degH(x)
for all x ∈ V , then we can turn G into H by doing edge swaps.

Proof. We prove this by induction on the size of V (the common vertex set of G and H).

When |V | = 1, there is nothing to show: there is only one possible graph on 1 vertex.

Assume this is possible for all pairs of (n − 1)-vertex graphs, and let G and H both have n
vertices. Let x be a vertex with the highest degree (in both G and H) and let S be the deg(x)
vertices with the highest degrees after x. (This is the same S as in our proof of the Havel–Hakimi
theorem and the edge swap lemma.)

By the argument in our proof of Theorem 6.2, we can perform edge swaps on G to get a graph
G′ in which x’s neighbors are the vertices in S. We can do the same to H, getting a graph H ′

(and so there is also a sequence of edge swaps that turn H ′ into H, by reversing those edge
swaps).

By induction, there is a sequence of edge swaps that turns G′−x into H ′−x (both (n−1)-vertex
graphs on the same vertex set). We can perform these edge swaps on G′ instead, and they will
work equally well, turning G′ into H ′. Finally, we know that we can turn H ′ into H.

This shows that we can turn G into H, and so by induction, this works when G and H have
any number of vertices.

Why is this theorem useful? Well, we know how to answer two possible questions about potential
degree sequences. . .

1. Is this sequence graphic? (Is it the degree sequence of a graph?)

2. How is this sequence graphic? (Find a graph with this degree sequence.)

. . . but there is a third, harder question we can ask:

3. What is a typical graph with this degree sequence?

23



That’s deliberately vague. However, Theorem 6.4 is the beginning of a possible answer to the
last question.

What we can do is start with some graph which has that degree sequence, then perform many
edge swaps at random, getting a random graph with this degree sequence.3 We can approxi-
mately answer questions like “are any graphs with this degree sequence bipartite” or “what is
the average diameter of a graph with this degree sequence” by sampling many random graphs
and analyzing the set of results.

We can even approximately answer questions like “how many different graphs have this degree
sequence?” To do this, just sample lots of graphs, then count how many repeats you get.
Compare this to how many repeats you’d expect, if there were N possible graphs total. This
should let you estimate the most likely value of N .

There is one difficulty to the procedure I’m outlining to you so cheerfully and optimistically,
and that is the requirement of performing many edge swaps. Obviously, just one or two random
edge swaps are not enough: the result is guaranteed to be very similar to our non-random
starting graph. As the number of edge swaps grows, the dependence on the starting graph
slowly decreases. However, it’s still not known in general how many edge swaps are necessary
to make that dependence negligible. Without that knowledge, the random sampling algorithm
cannot be considered reliable.

6.6 Practice problems

1. Using the degree sequence algorithm, or in some other way, determine which of the se-
quences below are graphic:

a) 7, 6, 5, 4, 3, 2, 1.

b) 4, 4, 3, 3, 3, 2, 2.

c) 6, 6, 5, 3, 2, 2, 1, 1.

d) n, n, n, 3, 3, . . . , 3︸ ︷︷ ︸
n times

(for any n).

e) n− 1, n− 1, n− 1, n− 1, 3, 3, . . . , 3︸ ︷︷ ︸
n−4 times

(for any n).

For the sequences that are graphic, construct graphs with those degree sequences.

2. If we can turn any graph G into any graph H with the same degree sequence using edge
swaps, then we can turn K4,4 into K4,4 using edge swaps.

Specifically, let G be the graph on the left in the diagram below, and let H be the graph
on the right. Corresponding vertices have the same degrees, and both of these graphs are
isomorphic to K4,4, but they are not the same graph: they have different edges. G has
all edges between {1, 2, 3, 4} and {5, 6, 7, 8}, while H has all edges between {1, 2, 5, 6} and
{3, 4, 7, 8}.

3Fine print: this does not sample a graph uniformly at random. Essentially, it samples a graph with probability
proportional to how many edge swaps are possible to do in it. But that’s a known bias we can account for.
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Find a sequence of edge swaps to turn G into H. (Hint: four edge swaps are enough.)

3. Let me tell you another story.

The other day, I was at another very large party. Once again, each person at the party
knew a different number of people, with one exception: I personally knew the same number
of people as another guest, named Pasha. In addition, I can promise you that everyone
at this party knew at least one other person.

The surprising thing is this: I did not know Pasha! How could this happen, and why does
this not contradict Proposition 6.1?

4. In Problem 6.1, I included the condition that everyone at the party knew at least one
other person. If this condition is dropped, then there is another possible graph: how can
we find it? (What should its degree sequence be?)

5. There are 7 possible graphs with the vertex set {1, 2, 3, 4, 5} such that deg(1) = deg(2) = 3
and deg(3) = deg(4) = deg(5) = 2. Find all of them, and demonstrate directly that we
can turn any one of them into any other via edge swaps.

(Hint: of the 7 graphs, there is a “central” example that is one edge swap away from all
6 others.)

6. There is another proof of Theorem 6.4 that is closer to our argument for Theorem 6.2.

Specifically, if G and H have the same vertex set, and every vertex has the same degree
in G and in H, then we can measure “how far away” G and H are from each other by
asking: how many edges does G have that are not also edges of H? Now we can do the
following:

a) Prove that if G and H are not literally the same graph, then there is an edge swap
we can perform on G to reduce “how far away” it is from H.

b) Prove Theorem 6.4 using part (a).

7. Let G be an n-vertex graph whose vertices 1, 2, . . . , n have degrees d1, d2, . . . , dn respec-
tively, sorted in descending order:

d1 ≥ d2 ≥ · · · ≥ dn.

Then d1 (the maximum degree of G) can be at most n− 1; in fact, it can be at most the
number of nonzero degrees among d2, . . . , dn.
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a) Explain why this is equivalent to the following inequality:

d1 ≤
n∑

i=2

min{di, 1}.

Here, min{a, b} is simply the smaller of the two numbers a and b.

b) Prove the following inequality, which is a 2-vertex generalization of the previous one:

d1 + d2 ≤ 2 +

n∑
i=3

min{di, 2}.

(Hint: consider the number of edges between vertices 1 and 2 and the rest of the
graph. Why is the “2+” there?)

c) In general, we have an inequality of the form

k∑
i=1

di ≤ f(k) +
n∑

j=k+1

min{dj , k}

for each k ∈ {1, . . . , n}. What is the best possible function f(k) that makes this
inequality true? (I ask for “best possible” because some incredibly big function like

f(k) = 22
2k

will also work, but will not be as useful as the smallest possible number
you could put there.)

More is true: a theorem of Erdős and Gallai [2] states that if a sequence d1, d2, . . . , dn
satisfies the inequality in part (c) for every k, and the sum d1 + d2 + · · · + dn is even,
then the sequence is graphic. This is an alternative way to check whether a sequence is
graphic.
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7 Multigraphs and digraphs

The purpose of this chapter

The first half of this chapter introduces multigraphs: a more general version of graphs, allowing
loops and duplicate (parallel) edges. By putting this content here, I’ve made my choice between
two unsatisfying options: should multigraphs be an exception, or should they be the default?

I’ve decided they should be the exception, not introduced until Chapter 7, and not considered
to be graphs except in a few asides in later chapters. The advantage of this option is that it
simplifies some definitions, especially early on when you have enough new complexity to worry
about; also, in many applications, it is all you need from graph theory.

The option I didn’t take would have been to make Definition 7.1 the definition of a graph, and
to refer to graphs without loops and parallel edges as simple graphs. (I will still use this term
when I need to emphasize that I’m not considering a multigraph.) The advantage of this option
is that it lets you state and prove every result in fuller generality.

In practice, the differences between simple graphs and multigraphs almost always fall somewhere
on the following spectrum:

1. They apply to multigraphs only: even when you start with a simple graph, you will be
forced to handle multigraphs to proceed.

2. They apply to both simple graphs and multigraphs, and there are applications where the
multigraph version is useful.

3. They apply to both simple graphs and multigraphs, but not in a way that’s useful: maybe
the loops and parallel edges can always be ignored, or maybe their existence trivializes
the problem.

4. They apply only to simple graphs.

In future chapters, I will clearly call out situations of the first two types, and try to mention
the other situations in passing if it seems unclear.

I will handle directed graphs, introduced in the second half of this chapter, similarly, and refer
to graphs as undirected graphs when it seems important to emphasize that they are not
directed.

Notably, the problem of finding Euler tours discussed in Chapter 8 is important to solve for both
multigraphs and for directed graphs, and I think it’s the first such problem in the textbook;
this is one of the reasons I’ve placed this chapter right before it.
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Figure 7.1: A multigraph representation of the 6-pebble game

7.1 Multigraphs

Consider a game1 with the following rules. There are six pebbles, split between three piles; each
pile must contain at least one pebble. There are two types of valid moves: you may swap two
piles, or you may move a pebble from one pile to another, as long as the starting pile has at
least two pebbles in it.

Figure 7.1 shows a graph of the possible states of the 6-pebble game (with vertex xyz repre-
senting a state with x, y, and z pebbles in the three piles); edges in the graph represent valid
moves. Well. . . it doesn’t quite show a graph of the game: it has some edges that a graph
cannot have. These edges represent moves that do not change the state, as well as situations
where two different moves accomplish the same result.

Question: Why would we draw a loop from vertex 114 back to itself?

Answer: Swapping the first two piles in state 114 just takes us back to state 114,
since the two piles have the same number of pebbles.

Question: Why are there two edges between vertices 123 and 213?

Answer: The game has two ways to turn 123 into 213 (or the reverse): we can
move a pebble from the 2-pebble pile to the 1-pebble pile, or we can
swap the 1-pebble pile with the 2-pebble pile.

1Well, it’s a “game” because it has rules, but there is no victory condition. Sorry.
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Question: Okay, so what’s going on at vertex 222?

Answer: The six “reasonable” edges out of vertex 222, going to vertices 123, 132,
213, 231, 312, and 321, all represent moving a pebble from one pile to
another. There are also three moves that accomplish nothing: we can
pick any two piles and swap them.

We cannot have these edges in a graph, so we define a multigraph to be a more general kind
of structure that allows these edges to exist. The formal definition needs to be a bit more
complicated, though.

Definition 7.1. A multigraph G is a triple consisting of an arbitrary set of vertices V (G),
an arbitrary set of edges E(G), and an incidence relation between them: we say that vertex
x is incident on edge e, or e is incident on x, if they are related by the incidence relation.

For each edge e, either one or two vertices can be incident on e, and they are called its end-
points. As for graphs, two vertices are called adjacent if they are incident on the same edge.

The edges of simple graphs were defined as pairs of vertices. This is no longer possible, because
two edges can have the same pair of endpoints; to distinguish them, there must be something
more to their identity. In diagrams (such as in Figure 7.1) we often don’t mark the difference
between such edges, but to deal with them formally, we would want to give them special
names.

We have special names for the two situations that can exist in a multigraph, but not in a simple
graph:

Definition 7.2. An edge in a multigraph which has only one endpoint is called a loop. Two
edges are called parallel if they have the same set of endpoints.

For example, in Figure 7.1, there is a loop incident on vertex 114, two parallel edges joining
vertices 123 and 213, and three parallel loops incident on vertex 222.

Many notions that we’ve introduced for graphs still make sense for multigraphs, with some mod-
ifications. There are two relatively large changes that are worth spending some time discussing:
one related to walks, paths, and cycles, and another related to vertex degrees.

A walk in a multigraph is no longer just a sequence of vertices: it matters how we get from
one vertex to another. For example, in the 6-pebble game, we consider a multigraph model if
it matters which kind of move we used at each step. (If this distinction does not matter, then
we do not need the added complexity of multigraphs.) Thus:

Definition 7.3. An x − y walk of length k in a multigraph G is a sequence

x0, e1, x1, e2, x2, . . . , xk−1, ek, xk

that alternates between vertices and edges of G, satisfying the following: x = x0, y = xk, and
for each i = 1, . . . , k, the endpoints of edge ei are xi−1 and xi.
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For example, suppose that we start in state 114 of the pebble game, and we make three moves:
we swap the first two piles, then move one pebble from the last pile to the first, then swap
the first two piles again. To represent this as a walk, we’ll in the 6-pebble multigraph, we will
first need to invent notation for the different types of edges. Let’s say that sij{x, y} denotes a
move between states x and y by swapping piles i and j, and mij{x, y}, denotes a move between
states x and y by moving a pebble between piles i and j. (Keep in mind that edges don’t have
a distinguished start and end, so sij{x, y} is the same edge as sij{y, x}.) Then our walk would
be represented by the sequence

114, s12{114, 114}, 114, m31{114, 213}, 213, s12{213, 123}, 123.

This is very cumbersome, so usually we don’t pull out the full notation unless we need it. Even
if we’re not looking this closely, though, the definition still matters. For example, when listing
the different walks between two vertices, it is important to know when two walks are considered
to be different: they are different if the two sequences are different.

Paths, closed walks, and cycles do not change very much, except that they are built on the
new foundation of Definition 7.3. A path is still defined to be a walk in which all vertices are
distinct; a closed walk is still a walk in which the first vertex is equal to the last. For cycles,
you might remember that the definition in Chapter 3 was rather complicated; here, we can give
a simpler definition.

Definition 7.4. A walk
x0, e1, x1, e2, x2, . . . , xk−1, ek, xk

in a multigraph G is a cycle if it is a closed walk (x0 = xk) where vertices x1, x2, . . . , xk are all
distinct, edges e1, e2, . . . , ek are all distinct, and k ≥ 1.

With this definition, it is now possible to encounter cycles of length 1 and 2. A cycle of length
1 occurs whenever the multigraph contains a loop: it is a cycle x, e, x where e is a loop incident
on x. A cycle of length 2 occurs whenever the muldigraph contains two parallel edges: it is a
cycle x, e, y, e′, x where x, y are distinct vertices and e, e′ are distinct edges incident on both x
and y.

7.2 Degrees in multigraphs

We would like to generalize the definition of vertex degrees to apply to multigraphs, while giving
the same answer as our old definition for simple graphs when there happen to be no loops or
parallel edges. It is not obvious how to do so in a natural way, so let’s stop and think for a
moment about it.

Definitions are not set in stone—as mathematicians, we can choose how to make them. However,
we should try to make interesting and useful definitions. Pay attention to the reasoning here if
you want to understand why definitions are the way they are!

To begin with, for simple graphs, we can count the degree of a vertex x in two equivalent ways:
by counting the edges incident on x, or by counting the vertices adjacent to x. In a multigraph,
these two methods can give different answers: for example, in Figure 7.1, vertex 123 is incident
on 7 edges, but only has 5 neighbors!
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We must immediately reject the second method of counting, because it completely ignores the
multigraph structure: why bother having two edges between 123 and 132 if it’s not going to
affect the degree of either vertex? The first method of counting is not bad, and could have
ended up the definition. However, it also has a problem.

By this rule, the degree sequence of the 6-pebble graph would be 9, 7, 7, 7, 7, 7, 7, 5, 5, 5. By the
Handshake Lemma (which we proved in Chapter 4 for simple graphs), the sum of degrees in a
graph is twice the number of edges; applying that here, we would conclude that the graph has
9+6·7+3·5

2 = 33 edges. But this is incorrect: if you count the edges in Figure 7.1 one by one, you
will get 36.

Question: Where does the discrepancy between 33 and 36 come from?

Answer: It comes from loops: when we naively apply the Handshake Lemma, the
6 loops in the graph only get counted as 3.

Question: Looking at the proof of the Handshake Lemma, why does this happen?

Answer: In the proof, we assumed that adding an edge to a graph increases the
degree sum by 2. However, if the degree of a vetex were defined to be
the number of incident edges, then a loop would only increase the degree
of a single vertex by 1.

The Handshake Lemma is so valuable that we are willing to add a special case to our definition,
just for this purpose. To rescue the lemma, we need the degree sum to increase by 2 when
a loop is added to a graph. It wouldn’t make any sense for a loop incident on a vertex x to
increase the degree of any vertex other than x; thus, it must contribute 2 to the degree of x.
This tells us what the definition of vertex degree must be:

Definition 7.5. The degree of a vertex x in a multigraph G is the number of edges incident
on x, counting every loop incident on x twice.

By this definition, the degree sequence of the 6-pebble graph is 12, 7, 7, 7, 7, 7, 7, 6, 6, 6.

You might ask: is there a graphic sequence problem for multigraphs? There is, but the answer
to it is much less exciting than it is for graphs. Practice problem 3 at the end of this chapter
gives the condition, and asks you to discover the proof yourself.

Finally, the definition of a graph isomorphism changes when it is applied to multigraphs. There
are two equivalent ways to make that change:

• We could say that an isomorphism between multigraphs G and H is still a bijection
φ : V (G) → V (H), but with a slightly different condition on φ. Rather than simply
preserving adjacency, it should be the case that for any vertices x and y in G (possibly
equal) the number of edges between x and y should be the same as the number of edges
between φ(x) and φ(y).
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(a) A numerical maze
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(b) A digraph representation of the maze

Figure 7.2: Solving a maze using directed graphs

• We could also say that an isomorphism between multigraphs G and H is a pair of bi-
jections: a bijection φ : V (G) → V (H), and a second bijection φ′ : E(G) → E(H). The
condition relating these should now be that for a vertex x ∈ V (G) and an edge e ∈ E(G),
x is incident on e if and only if φ(x) is incident on φ′(e): the bijections φ and φ′ preserve
the incidence relation.

These two options are equivalent, and therefore equally good, but the second is more in the spirit
of our definition of a multigraph. The intuition you should have is that a discrete structure
(like a graph or a multigraph) consists of two parts: some objects, and some relationships
between them. In the case of a multigraph, the objects are the vertices and edges, and the
relationships between them are given by the incidence relation. An isomorphism between two
discrete structures should be a bijection between the objects that preserves the relationships.
This idea will guide you to the correct definition of an isomorphism both in graph theory and
outside it.

7.3 Directed graphs

Figure 7.2a shows an unusual kind of maze: a numerical maze. Like a normal maze, it has a
start (the top left cell) and an end (the bottom right cell). Instead of paths and walls, however,
you solve the maze by using the numbers: if you’e in a cell with the number k, then you can
jump to another cell that’s k steps away either horizontally or vertically.

We might try to represent an ordinary maze by a graph, so that a path in the graph from the
start vertex to the end vertex will give us a solution to the maze. In the numerical maze, we
encounter an unexpected difficulty: the jumps we make in the maze are often one-way. From
the top left corner, which has a 3 in it, we can jump to a cell three steps to the left or to a cell
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three steps down. However, neither of these numbers contains a 3, so neither of them will let
us return to where we just were! As a result, a graph is unsuitable as a model for this maze:
adjacency between the cells is an asymmetric relationship.

The structure we use in such cases is called a directed graph, or digraph for short. In a
diagram, we draw a directed graph by making each edge an arrow, rather than a line, as in
Figure 7.2b. An arrow from vertex x to vertex y represents, informally, an adjacency that exists
only when going from x to y, not when going from y to x. The formal definition is:

Definition 7.6. A directed graph or digraph D is a pair consisting of an arbitrary set of
vertices V (D) and a set of arcs or directed edges E(D). Each arc is an ordered pair (x, y)
where x, y ∈ V (D).

We say that arc (x, y) starts at x and ends at y; it is an arc from x to y, or out of x and
into y.

We may combine this definition with the definition of a multigraph in the previous section,
obtaining the concept of a directed multigraph. However, even without that added flexibility,
we allow the arcs (x, y) and (y, x) to coexist in a digraph: after all, these are not the same arc!
For example, in Figure 7.2b, arcs (21, 23) and (23, 21) both exist: we can jump in either direction
between this pair of cells, becaues they are 2 steps apart, and both contain a 2. The pair (x, x)
is also a valid ordered pair, so it can also be an arc in a directed graph: it represents a loop
from x to x.

In directed graphs, the notion of vertex degrees becomes even more muddled than it was for
multigraphs. Properly speaking, we should not describe the degree of a vertex by a single
number. Instead, we count the number of arcs into a vertex and the number of arcs out of a
vertex separately.

Definition 7.7. The indegree of a vertex x in a digraph D, denoted deg−D(x), is the number
of arcs into x.

The outdegree of a vertex x in a digraph D, denoted deg+D(x), is the number of arcs out of x.

As with the ordinary notion of degree, we drop the subscript and write deg−(x) and deg+(x) if
it is clear which digraph containing vertex x we mean.

An even more powerful version of the Handshake Lemma holds for indegrees and outdegrees in
directed graphs. Before reading ahead to see how to prove it, see if you can figure out a proof
of Lemma 7.1 lemma yourself, by imitating the proof of Lemma 4.1 in Chapter 4.

Lemma 7.1. In any digraph D, the vertex indegrees add up to the number of arcs, as do the
vertex outdegrees: ∑

v∈V (D)

deg−D(v) = |E(D)| =
∑

v∈V (D)

deg+D(v).
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Proof. We will prove that for any directed graph with m edges, the identity in the lemma holds,
and we will do it by induction on m.

The base case is m = 0. The lemma holds in this case because the sum of indegrees, the
number of arcs, and the sum of outdegrees are all equal to 0: there are no arcs, so no vertex
has a nonzero indegree or outdegree.

Assume that the lemma holds for all directed graphs with m − 1 arcs. Let D be a directed
graph with m arcs, and let (x, y) be any arc of D. We can apply the inductive hypothesis to
D − (x, y) (the digraph we get by deleting arc (x, y)), an digraph with m− 1 arcs.

What is the relationship between the indegrees and outdegrees in D and in D − (x, y)? There
are three cases:

• In D, the outdegree of x is 1 higher than in D− (x, y), because arc (x, y) contributes 1 to
that outdegree.

• In D, the indegree of y is 1 higher than in D − (x, y), because arc (x, y) contributes 1 to
that indegree.

• deg+D−(x,y)(v) = deg+D(v) and deg−D−(x,y)(v) = deg−D(v) in all other cases.

Adding up all the changes, we see that∑
v∈V (D)

deg−D(v) = 1 +
∑

v∈V (D)

deg−D − (x, y)(v)

and ∑
v∈V (D)

deg+D(v) = 1 +
∑

v∈V (D)

deg+D − (x, y)(v).

By our inductive hypothesis, both of the right-hand sides are equal to 1+(m−1) = m, proving
the lemma for D: an arbitrary m-arc directed graph. Then, by induction, the lemma holds for
directed graphs with any number of arcs.

Less commonly, in addition to the indegree and outdegree of a vertex, we define the net degree
of x to be deg±D(x) = deg+(x)−deg−(x) and the total degree of x to be degD(x) = deg+(x)+
deg−(x).

Question: How can we interpret the net degree and the total degree of x?

Answer: The net degree measures how many more arcs at x go out, compared to
in; it tells us whether x is a “net exporter” or “net importer” of arcs.
The total degree is what the degree of x would be if we ignored the
orientations of the arcs, and treated D as an undirected graph.

Question: What do the net degrees add up to in a directed graph?

Answer: We can write the sum of net degrees as∑
v∈V (D)

deg±D(v) =
∑

v∈V (D)

deg+(v)−
∑

v∈V (D)

deg− (v),

which simplifies to 0 by Lemma 7.1.
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Question: What do the total degrees add up to?

Answer: For a similar reason, they add up to 2|E(D)|. This also follows from the
Handshake Lemma applied to the undirected graph we’d obtain from D
by ignoring the orientations of the arcs.

In directed graphs, the notion of isolated vertices (with indegree and outdegree 0) still makes
sense, but it is sometimes useful to consider the indegree and outdegree separately. We call a
vertex x in a digraph a source if deg−(x) = 0, and a sink of deg+(x) = 0.

Question: Does the graph in Figure 7.2b contain any sources?

Answer: Yes: vertices 45 and 52 are sources. (You might be tempted to call 11 a
source because it’s a starting point, but it’s not: it’s possible to return
to vertex 11 after leaving it.)

Question: Does it contain any sinks?

Answer: Yes: vertex 33 is a sink, because the number in the center of the grid
is 4, and there are no cells to hop to that are 4 spaces away in any
direction. Sinks in such a graph represent “dead ends” in the maze
which cannot be left.

7.4 Directed walks, paths, and cycles

Moving on, the other big change with directed graphs—and, often, the reason we study directed
graphs to begin with—is the behavior of walks, paths, and cycles. The definition of a walk in
a digraph superficially does not seem very different from the definition we saw in Chapter 3 for
undirected graphs:

Definition 7.8. An x − y walk of length k in a directed graph D is a sequence

x0, x1, x2, . . . , xk

of vertices of D where x = x0, y = xk, and for each i = 1, . . . , k, (xi−1, xi) is an arc of D.

The difference is that this definition requires all the arcs (xi−1, xi) to point in the same direction
along the walk, and this small difference is a dramatic change. It is no longer true that an x−y
walk is essentially the same as an x− y walk except for which way you go: in fact, it’s possible
that an x− y walk exists, but a y − x walk does not!

A path is still defined to be a walk in which all vertices are distinct; a closed walk is still a walk
in which the first vertex is equal to the last. As we did for multigraphs, we will give a new
definition of cycles:

Definition 7.9. A walk x0, x1, . . . , xk in a directed graph D is a directed cycle if it is a closed
walk (x0 = xk) where vertices x1, x2, . . . , xk are all distinct, and k ≥ 1.
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As with multigraphs, we are happy to have directed cycles of length 1 or 2, because they still
represent some nontrivial interesting structure in D.

To finish this introduction to directed graphs, let’s put the new ideas about directed graphs
together into a theorem: the directed version of Theorem 4.4 from Chapter 4.

Theorem 7.2. Every directed graph D with no sinks contains a directed cycle.

Proof. Let x0, x1, x2, . . . , xk be a longest directed path in D. Because D has no sinks, we know
in particular that deg+(xk) > 0, so there must exist some arc (xk, y) that starts at xk.

If y /∈ {x0, x1, x2, . . . , xk−1}, then the sequence x0, x1, x2, . . . , xk, y would be a longer directed
path, contrary to our assumption. Therefore y = xi for some i ≤ k − 1, and xi, xi+1, . . . , xk, xi
is the directed cycle we wanted.

Question: Does the same result hold for directed graphs with no sources?

Answer: Yes: we can write a similar proof, but look for a vertex y with an arc
into x0, rather than out of xk.

Question: Does the converse hold? That is, if D has a directed cycle, is it true
that it has no sources or sinks?

Answer: No, and the digraph in Figure 7.2b is a counterexample. This digraph
has two sources and a sink, and yet it still has many directed cycles: for
example, the length-3 cycle 12, 15, 13, 12.

7.5 Practice problems

1. Consider the 6-pebble multigraph in Figure 7.1.

a) How many 114− 411 walks of length 1 does it have?

b) What about length 2?

c) What about length 3?

d) For practice, write out one of the length-3 walks as a sequence of vertices and edges,
using the sij{x, y} and mij{x, y} notation for edges.

2. Consider the multigraph below. How many closed walks of length 10 begin and end at
the vertex on the left?

3. Here is why we consider the graphic sequence problem for simple graphs, and not for
multigraphs.

a) Let d1 ≥ d2 ≥ · · · ≥ dn be a sequence of nonnegative integers. Show that it is the
degree sequence of a multigraph if and only if d1 + d2 + · · ·+ dn is even.
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b) Let d1 ≥ d2 ≥ · · · ≥ dn be a sequence of nonnegative integers. Show that it is the
degree sequence of a multigraph without loops if and only if d1+d2+ · · ·+dn is even
and d1 ≤ d2 + d3 + · · ·+ dn.

4. Let G be a simple graph with n vertices and maximum degree r. We assume that rn is
even, so that an r-regular graph on n vertices exists. (But G might not be r-regular; some
of its vertices can have degree less than r.)

a) Prove that there is an r-regular multigraph H, with V (H) = V (G), such that G is a
subgraph of H. (In other words: we can add edges to G to make it regular.)

b) Give an example of a graph G for which the graph H in part (a) cannot possibly be
a simple graph.

5. Solve the numerical maze in Figure 7.2a. What kind of graph-theoretic object represents
your solution?

(For an extra challenge, use breadth-first-search, as described in Chapter 3, and find the
shortest path through the maze.)

6. A game is played with two piles of stones. On a turn, a player picks a pile which is not
empty, and takes one or more stones from it. The game ends once both piles are empty.

We can represent this game by a digraph whose vertices are the states, with arcs repre-
senting the valid moves. Let Dn,m be the digraph we get when the game is played with a
pile of size n and a pile of size m.

a) Draw a diagram of D3,2. (It should have 12 vertices.)

b) Which vertices of Dn,m are sources? Which are sinks?

c) Are there any values of n and m for which Dn,m contains a directed cycle?

7. If D and D′ are directed graphs, then an isomorphism from D to D′ s a bijection
φ : V (D) → V (D′) such that (x, y) ∈ E(D) if and only if (φ(x), φ(y)) ∈ E(D′). The
idea of isomorphism is the same for directed graphs: all properties of directed graphs
which don’t depend on how the vertices are named or how the graph is drawn should be
the same for two isomorphic digraphs.

Here are three directed graphs which would be isomorphic if we forgot about the directions
of the arcs.

1

2 3

4 5

6

11

12 13

14 15

16

21

22 23

24 25

26

Prove that as directed graphs, none of these are isomorphic.
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8 Euler tours

The purpose of this chapter

This chapter concludes the part of this book devoted to vertex degrees. It is an application of
the concept of vertex degrees, as well as some results from Chapter 4, to solve a problem that
could be said to be the beginning of graph theory.

There is a striking contrast in graph theory between the theory of Euler tours and Eulerian
graphs, discussed in this chapter, and the theorem of Hamilton cycles and Hamiltonian graphs,
discussed in Chapter 16. Superficially, the two problems are very similar, yet we are able to pin
down the exact circumstances in which an Euler tour exists; for Hamiltonian cycles, hard work
is required in most cases.

We will consider the Eulerian tour problem for multigraphs; I will put the word “multigraph”
in statements of theorems to remind you of this. Of course, everything we say will also be true
for graphs: graphs are just multigraphs that happen not to have any loops or parallel edges.

8.1 Don’t lift your pencil!

You might have seen a brainteaser like this before! Look at the diagram in Figure 8.1a. Can
you draw this shape on paper without lifting your pencil (or pen), and without going over the
same line more than once?

You can: Figure 8.1b shows you one particularly symmetric way to do it. (To make it clear
what the solution is, the lines are bent away from each other slightly to indicate where the path
does or does not cross itself.) As a bonus, the path in Figure 8.1b returns to where it started.

(a) Can you draw this figure
without lifting your pencil?

(b) Solution to the challenge in
Figure 8.1a

(c) Modeling the puzzle as a
multigraph

Figure 8.1: Drawing without lifting your pencil
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(a) The five rooms puzzle (b) The bridges of Kőnigsberg

Figure 8.2: Two more puzzles equivalent to pencil drawing

This is a book on graph theory, though, not on pencil drawings. So what does this question
have to do with graph theory? This is the same question that this book started with: how do
we model this problem as a graph?

The places in the drawing that matter most are the places where several lines meet: when
tracing the drawing with your pencil, those are the only places where we make a decision. So it
makes sense to have a vertex for each of those points. The rest of the drawing consists of lines
that go from one such point to another, and their shape does not matter for solving the puzzle:
only the starting and ending point matters. So for every such line, we will add an edge between
the two vertices it joins. If we apply idea to Figure 8.1a, the result is shown in Figure 8.1c.

Question: The result is a multigraph; how did that happen?

Answer: We get parallel edges whenever there are two or more lines that start
and end at the same pair of intersection points.

Question: What sort of graph-theoretic object are we looking for when we solve
the brainteaser?

Answer: We are looking for a walk in the graph which uses every edge exactly
once.

There are two other puzzles worth mentioning that are equivalent graph-theoretically to the
pencil-drawing puzzle. The first is the five rooms puzzle, shown in Figure 8.2a. Here, five
rooms are connected by a total of 16 doors, and the challenge is to plot a path through the
rooms that passes exactly once through every door.

Question: What should the vertices and edges be in the multigraph that makes
the five rooms puzzle equivalent to the pencil-drawing puzzle?

Answer: There should be six vertices: the five rooms, and the outside region.
Each door between two rooms should be an edge.

The final such puzzle, the problem of the seven bridges of Kőnigsberg, has historical signifi-
cance. It was first studied by Leonhard Euler, in 1736, and it is notable for being the first
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mathematical problem to be abstracted into a graph-theoretic model before being solved. (It
predates modern graph theory, so the terminology used by Euler was quite different from what
you are reading here.) The problem itself is based on a map of the city of Kőnigsberg, shown
somewhat abstractly in Figure 8.2b. In Euler’s time, there were seven bridges connecting the
two sides of the river and the two large islands in the middle of the river. The challenge was to
find a path through the city that crossed each bridge exactly once.

Question: What should the vertices and edges be in the multigraph that models
the bridges of Kőnigsberg?

Answer: There should be a vertex for each of the four landmasses, with an edge
for every bridge.

The problem we are solving in all three of these puzzles is named in Euler’s honor.

Definition 8.1. A walk that contains every edge of a graph or multigraph exactly once is called
an Euler walk. If, additionally, the Euler walk is closed, it is called an Euler tour.

All three puzzles we have looked at are about finding an Euler walk. Even though the solution
in Figure 8.1b happens to be an Euler tour, we have not had a reason to consider Euler tours for
their own sake so far. However, you are about to see in this chapter that Euler tours are actually
the more fundamental, and more natural object. This is reflected in the following definition:

Definition 8.2. A graph or multigraph is called Eulerian if it has an Euler tour.

8.2 First steps

The key to determining whether an Euler walk or Euler tour exists turns out to be in classifying
vertices as odd or even. We will use these terms just as in Chapter 4, calling a vertex even if
it has even degree and odd if it has odd degree.

The following result does not completely answer our question, but is easier to prove than the
main theorem of this chapter, so it is where we will begin.

Lemma 8.1. In an Eulerian multigraph, every vertex must be even.

Proof. Let G be an Eulerian multigraph, and let the sequence of alternating vertices and edges

x0, e1, x1, e2, x2, . . . , em, xm

be an Euler tour of G. We prove a stronger statement: if a vertex x appears k times among
x1, . . . , xm, then degG(x) = 2k. Intuitively, the argument for this is that if we follow the Euler
tour around G, then every time the tour enters and leaves x, it uses 2 more edges incident on x.

Formally, let I be the set {i : 1 ≤ i ≤ m and xi = x}: the set of all positive positions in
the Euler tour where x appears. If |I| = k, then the k edges {ei : i ∈ I} and the k edges
{ei+1 : i ∈ I} must be incident on x, contributing 2k to degG(x). This has two caveats:
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• If x = xi = xi+1 for some i, then edge ei is double-counted in the argument above.
However, in this case, edge ei is a loop with both endpoints at x, contributing 2 to
degG(x): it should be double-counted.

• If x = xm, then there is no edge em+1 to count. However, in this case, x = x0, because
the Euler tour is a closed walk, so edge e1 should be counted instead.

So in both unusual cases, the total contribution to the degree of x is still 2k.

Every edge of G appears in the Euler tour exactly once, and so by counting the contribution
of edges e1, . . . , em to the degree of x, we compute the degree completely. This shows that
degG(x) = 2k, an even number; since x was arbitrary, all vertices must be even.

Question: Why doesn’t Lemma 8.1 solve the problem completely?

Answer: If every vertex in a multigraph is even, the lemma doesn’t guarantee
that the multigraph does have an Euler tour.

In other words, we have shown that the condition “every vertex in G is even” is a necessary
condition forG to be Eulerian: that is, G can’t be Eulerian without it. We have not determined
whether it is a sufficient condition for G to be Eulerian: whether all graphs that satisfy the
condition do in fact have Euler tours.

Question: If x0, e1, x1, e2, x2, . . . , em, xm were an Euler walk, but not an Euler tour,
what would change in the proof of Lemma 8.1?

Answer: When x = xm, it would no longer be true that x = x0 as well, so the
degree of x would be 2k−1 rather than 2k: x would be odd. Also, when
x = x0, the argument wouldn’t “notice” the contribution of edge e1 to
x’s degree, because I only contains positive integers, so x would be odd
in this cases as well.

Following this reasoning carefully gives us the following claim:

Lemma 8.2. If a multigraph G has an x − y Euler walk, where x ̸= y, then vertices x and y
must be odd, while all other vertices must be even.

Question: Which of the puzzles in Figure 8.2 have solutions?

Answer: Neither puzzle has a solution. If we convert them to multigraphs, then in
both cases there will be four odd vertices. However, Lemma 8.2 implies
that a graph with an Euler walk can have at most two odd vertices.

The condition “at most two odd vertices” is a bit more complicated than the condition “no
odd vertices”, but that’s not the real reason that Euler tours are taken to be more fundamental
than Euler walks.
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Imagine for a moment that we had a method for finding Euler tours, but not Euler walks, and
suppose that we were faced with a graph G where only two vertices, x and y, were odd. Well,
we could fix this quite easily: we could simply add an edge e with endpoints x and y. In the
new graph—call it H—all vertices would be even, so H would have an Euler tour.

In our imagination, we already have a method for finding Euler tours, so we could easily find
an Euler tour in H. That Euler tour would have to use the new edge e at some point. Well,
if we simply delete edge e from the tour, we could follow the tour starting from x and visit all
the other edges, ending at y. This is an Euler walk in G.

Outside our imagination, we don’t have any systematic method of finding Euler walks or Euler
tours, yet. However, this argument is a reduction from the Euler walk problem to the Euler
tour problem. It tells us that all we need to focus on is finding Euler tours in graphs where
all vertices are even—as soon as we find an algorithm to do this, we will immediately have an
algorithm for Euler walks as well!

8.3 Cycle decompositions

Let’s take a detour1 and consider cycle decompositions.

A decomposition of a graph G is a partition of the edges of G: we split up the graph into
many pieces that share no edges. We can think of the pieces as sets of edges (in which case
their union as sets is E(G)) or as subgraphs (in which case their union as graphs is G). There
are many problems out there about finding special kinds of decompositions of a graph.

In particular, a cycle decomposition of G is a set of cycles in G such that every edge of G is
in exactly one cycle. Here, we can think of these cycles in three ways: as walks which happen
to be cycles, or as sets of edges, or as cycle subgraphs of G.

When studying the Euler tour problem in 1912, Oswald Veblen realized that a single closed
walk and a collection of many cycles share a common feature: in both cases, if they visit a
vertex k times, they use 2k edges incident on that vertex. Therefore the necessary condition for
Eulerian graphs is also necessary for having a cycle decomposition. However, Veblen was able
to prove [5] that for cycle decompositions, this condition is both necessary and sufficient!

This proof uses Theorem 4.4 from Chapter 4 in a key step. We proved this theorem for simple
graphs, but if you go back and examine our argument, you should be able to convince yourself
that it applies to multigraphs as well.

Theorem 8.3. A multigraph has a cycle decomposition if and only if all of its vertices are even.

Proof. Suppose first that G is a multigraph with a cycle decomposition C, and let x be an
arbitrary vertex of G.

For every cycle x0, e1, x1, . . . , ek, xk in C that contains x as one of its vertices xi, the cycle also
contains two edges incident on x: edges ei−1 and ei. Alternatively, if the cycle has length 1, it
has the form x, e, x for an edge e; then e is a loop incident on x. In both cases, the edges of the
cycle contribute 2 to the degree of x.

1Heh-heh.
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Together, the cycles in C include each edge of G exactly once. So if we add up the contributions
of each cycle’s edges to the degree of x, we just get the total degree of x in G. This is a sum of
0’s and 2’s, so it is even; since vertex x was arbitrary, all vertices of G must be even.

This argument shows that the condition is necessary; now, we must prove that it is sufficient.
So let G be a multigraph in which all vertices are even; our task is to find a cycle decomposition
of G. We will do this by strong induction on the number of edges in G. As our base case, if G
has 0 edges, then the empty set is a cycle decomposition: it includes every edge exactly once,
because there are no edges to include!

Suppose G has m > 0 edges. Pick any component of G that has at least one edge. In that
component, no vertices can have degree 0: an isolated vertex would be a component with no
edges, all by itself. Also, no vertices can have degree 1: by assumption, all vertices in G are
even. Therefore the component has minimum degree 2. Theorem 4.4 says that a graph with
minimum degree 2 must contain a cycle; applying the theorem to this component of G, we find
a cycle C.

In G − C (the graph we get by deleting the edges of C, leaving the vertices as they are), all
vertices are still even: the degree of every vertex that lies on C goes down by 2, and all other
degrees are unchanged. Also, G − C has fewer than m edges (since C contained at least one
edge), so by induction, G− C has a cycle decomposition. Add C to that cycle decomposition,
and we get a cycle decomposition of G.

By induction, a cycle decomposition exists for any number of edges.

This proof also suggests an algorithm for finding a cycle decomposition. Simply find any cycle,
set it aside, and repeat with the remainder of the multigraph until we are out of edges. How
do we find a cycle? Well, the proof of Theorem 4.4 begins by taking a longest path, but this is
done only to simplify the proof. Really, we can build up a path by aimless wandering through
the multigraph, taking care only not to leave a vertex by the same edge we used to enter it. As
soon as we revisit the vertex, we obtain a cycle in the same way that we obtained it from the
longest path.

8.4 Gluing cycles together

Let’s first pause to clear the air about one thing: the condition that all vertices are even is not
sufficient to guarantee that a multigraph is Eulerian. However, the exception is rather silly.

Question: How can you find a multigraph where all vertices are even, but which
does not have an Euler tour? (The simplest example has only 2 edges.)

Answer: Simply make sure that your multigraph has multiple connected compo-
nents with edges in them! A walk can never jump from one connected
component to another, so you can never include all edges of the multi-
graph in a single walk.
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This is a minor quibble; we will be fine if we restrict our attention to connected graphs. We
can even allow graphs with multiple components, as long as all components except for one are
merely isolated vertices. The cycle decomposition we get from Theorem 8.3 is the key ingredient
in putting together an Euler tour.

Theorem 8.4. A multigraph is Eulerian if and only if it is connected (except possibly for
isolated vertices) and all of its vertices are even.

Proof. We know that both parts of this condition are necessary: by Lemma 8.1, all vertices
must be even, and we have just discussed why the graph cannot have two components with
edges. It remains to show that together, these two conditions are sufficient.

Let G be a multigraph which has only one connected component that is not an isolated vertex,
and in which every vertex of G is even. The first thing we’ll do is use Theorem 8.3 to find a
cycle decomposition of G.

Next, we’ll build up our Eulerian tour step by step. This is a proof by algorithm. Throughout
this process, we will update two objects:

• a “partial tour” PT , which is a closed walk that uses each edge at most once, but might
miss some edges.

• a set U of “unprocessed cycles”: a cycle decomposition of just the edges that are not part
of PT .

Initially, we’ll take PT to be one of the cycles in our cycle decomposition, and U to be the set
of all the other cycles. We will stop when U = ∅.

One by one, we will remove a cycle from U , and splice it into PT . To make this possible, it’s
important to find a cycle in U that contains one of the vertices visited by PT . There must
always be such a cycle: otherwise, we’d get two connected components in G! There would be
no edge between two disjoint sets: the set of vertices visited by PT , and the set of vertices that
are part of a cycle in U . But both of these sets contain edges, so that would contradict our
assumption about the connected components of G.

So let’s suppose that we have found such a cycle C. Let PT be the closed walk

x0, e1, x1, e2, x2, . . . , ek, xk,

let C be the the closed walk
y0, f1, y1, f2, y2, . . . , fℓ, yℓ,

and suppose that they have a vertex in common: xi = yj . Then to incorporate C into PT ,
replace PT by the closed walk

x0, e1, x1, . . . , ei, yj , fj+1, yj+1, . . . , fℓ, yℓ, f1, y1, . . . , fj , yj︸ ︷︷ ︸
a shifted version of C

, ei+1, xi+1, . . . , em, xm.

This is a long sequence of symbols, but essentially, all it says is this: replace the shared vertex
xi by a version of C that’s shifted to start and end at yj (the same vertex as xi).

After this process, PT contains all the edges which were previously traversed by C, as well as
all the edges it previously contained. Therefore after we’ve updated PT , and removed C from
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(b) A cycle decomposition of the graph in Figure 8.3a

Figure 8.3: A graph and its cycle decomposition, in preparation for finding an Euler tour

U , it’s still true that U is a cycle decomposition of the edges not part of PT . Also, it’s still true
that PT uses every edge at most once: none of the new edges were previously used by PT .

Repeat this until U is empty. Throughout the algorithm, it’s been true that all edges of G are
either part of PT , or part of a cycle in U . Now that there are no cycles in U , all edges must be
part of PT , so PT is an Euler tour.

To truly understand the proof and the algorithm, let’s go through an example, finding an Euler
tour of the graph in Figure 8.3a. We will begin with a cycle decomposition. The one shown in
Figure 8.3b is actually not the best one to use—life would be easier for us if we had fewer longer
cycles. The decomposition with many short cycles will let us see more steps of the algorithm
in action.

We can view the graph in Figure 8.3a as a simple graph, and not a multigraph. I am relying
on this to simplify notation slightly: our cycles and walks will only have to record the vertices
used, and not the edges.

1. Initially, our partial tour PT is just the first cycle: 1, 5, 7, 1.

2. Next, we want to add a cycle that shares a vertex with PT : that is, we can’t use the
cycle 2, 4, 8, 2. Let’s take the fourth cycle: 3, 4, 6, 5, 3. (We could also have used the third
cycle.)

The only common vertex between this cycle and PT is vertex 5. So we shift the cycle
we’re adding, putting in the form 5, 3, 4, 6, 5. Then, we replace the 5 in PT by this shifted
cycle:

1, 5, 6, 4, 3, 5︸ ︷︷ ︸, 7, 1.
3. At this point, PT has lots of vertices, so we can choose any cycle to add. Let’s add the

second cycle: 2, 4, 8, 2. This shares vertex 4 with PT , so we rewrite it as 4, 8, 2, 4, and
splice it into PT :

1, 5, 6, 4, 8, 2, 4︸ ︷︷ ︸, 3, 5, 7, 1.
4. Finally, we add the only remaining cycle: 1, 2, 6, 8, 7, 3, 1. This shares many vertices with

PT , but in particular, it shares vertex 1. We replace one occurrence of vertex 1 in PT by
this cycle, which we don’t need to shift:

1, 2, 6, 8, 7, 3, 1︸ ︷︷ ︸, 5, 6, 4, 8, 2, 4, 3, 5, 7, 1.
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The result is an Euler tour. To check this for yourself, draw all the vertices of the graph in
Figure 8.3a, with no edges between them. Then, follow the walk we found, drawing each edge
as you use it. As you go, check that you never draw an edge more than once; at the end, check
that you have drawn all of Figure 8.3a.

8.5 Variations on Euler tours

Of course, now that we have an algorithm for Euler tours, we immediately have an algorithm for
Euler walks—and a test for their existence. The only thing that changes is that a multigraph
with two odd vertices can still have an Euler walk.

Question: In a multigraph with exactly two odd vertices, is it possible for them to
be in different connected components?

Answer: It is not: if this happened, then looking at one of those connected
components by itself, we’d see a subgraph with only one odd vertex.
However, Corollary 4.2 requires the number of odd vertices in any graph
to be even. (It is still true for multigraphs.)

Question: Can you think of a way to modify the algorithm for Euler tours so that
it finds an x− y Euler walk instead?

Answer: Begin by finding an x− y path P . Deleting P will leave a graph where
all vertices are even, so it will have a cycle decomposition. Now we can
follow the algorithm, but taking PT = P to start with, splicing in the
cycles one by one, as before.

Another interesting problem is the problem of finding Euler tours in a directed graph. The first
novelty in the directed setting is that we no longer check for whether a vertex is even: entering
and leaving a vertex has a different effect on its indegree and outdegree.

Question: If a directed graph D has an Euler tour, what can you say about the
degree of a vertex that appears on the tour k times?

Answer: Each arc into the vertex adds 1 to its indegree, and each arc out of the
vertex adds 1 to its outdegree. Thus, the vertex will have indegree k
and outdegree k.

Question: What, then, is the corresponding necessary condition for a digraph to
be Eulerian?

Answer: Every vertex must have an indegree equal to its outdegree. (We can call
such vertices balanced.)
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To prove a necessary and sufficient condition for directed graphs, we must retrace the steps we
took in the undirected setting. The only new ingredient is the result we use to find a single
cycle, which we proved in the previous chapter. Can you anticipate it before it is used?

Lemma 8.5. A digraph has a cycle decomposition if and only if all of its vertices are balanced.

Proof. Suppose first that D is a digraph with a cycle decomposition C, and let x be an arbitrary
vertex of D. For every cycle x0, x1, . . . , xk in C that contains x as one of its vertices xi, the cycle
contains one arc into x and one arc out of x: arcs (xi−1, xi) and (xi, xi+1). (If x = x0 = xk,
these are arcs (xk−1, xk) and (x0, x1).) We can find the indegree and outdegree of x by adding
up the contribution from each cycle in C; since each cycle contributes an equal number to the
indegree and outdegree of x, in the end x is balanced. This proves that the condition in the
lemma is necessary.

Next, we show by induction on the number of arcs in D that the condition is sufficient. As the
base case, if there are no arcs, then the empty set is a cycle decomposition. So now assume D
is a digraph with m > 0 arcs in which all the vertices are balanced.

Let D′ be the subgraph of D obtained by deleting all isolated vertices. In D′, every vertex has
a positive indegree and a positive outdegree (which are equal to each other); by Theorem 7.2,
D′ contains a cycle C, because it has no sinks.

Delete the edges of C from D to get a digraph D − C with fewer arcs: by the inductive
hypothesis, it has a cycle decomposition. Add C to that cycle decomposition to obtain a cycle
decomposition of D, completing the proof.

The only difficulty with stating the final result is that we do not exactly know what it means to
have a connected component in a directed graph. I will give you the statement first, and then
we will determine what it means.

Corollary 8.6. A directed graph is Eulerian if and only if it is weakly connected (except possibly
for isolated vertices) and all of its vertices are balanced.

The proof is the same as the proof of Theorem 8.4: we start with a cycle decomposition, and
splice the cycles into a partial Euler tour, one by one.

Question: Looking at the proof of Theorem 8.4, where do we use the connectedness
of the graph?

Answer: We needed it to be impossible for the partial tour PT and the unused
cycles U to have no vertices in common.

So the notion of connectedness we need is simply that it should be impossible to split the vertices
of our digraph D into two sets, with no arcs between them in either direction—because that’s
what we’d get if PT and the cycles of U shared no vertices. This is a notion of connectedness
that ignores the orientations of the arcs.

Formally, we call a digraph D weakly connected if replacing each arc by an undirected edge
would result in a connected undirected graph. Now we know what Corollary 8.6 means!
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8.6 Practice problems

1. The classic brainteaser in the “draw without lifting your pencil” genre is the picture of a
stylized house shown below:

In order to draw this picture without lifting your pencil or retracing any line, where must
you start and end? (Of course, you can always swap the start and end.)

2. Find a cycle decomposition of the Harary graph H10,4 (as defined in Chapter 5), and use
it to find an Euler tour of H10,4.

3. Find an Euler tour of the 4-dimensional hypercube graph, Q4.

4. The graph below is not Eulerian, because some of its vertices are odd. What is the
maximum length of a closed walk in this graph that does not use any edge more than
once? Prove your answer.

5. In the complete graph K7, every vertex has degree 6, so by Theorem 8.3, K7 has a cycle
decomposition.

a) Suppose we wanted to decompose K7 into as few cycles as possible. How many cycles
would we want to use, and of what lengths? Give an example of such a decomposition.

b) Suppose we wanted to decompose K7 into as many cycles as possible. How many
cycles would we want to use, and of what lengths? Give an example of such a
decomposition.

6. Prove that every multigraph has a “double tour”: a closed walk which uses every edge
exactly two times, once in each direction. (That is, an edge e with endpoints x and y
must appear once as . . . , x, e, y, . . . and once as . . . , y, e, x, . . . .)

7. We will cover perfect matchings in detail starting in Chapter 12; briefly, a perfect
matching is a spanning 1-regular subgraph of a graph. This exercise presents part of a
method due to Noga Alon [1] for finding perfect matchings using Euler tours.

a) Let G be a bipartite multigraph: that is, let there be a partition V (G) = A ∪ B,
with A ∩B = ∅, such that all edges of G have one endpoint in A and one endpoint
in B.

Prove that if every vertex of G is even, then G has an even number of edges.
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b) Let G be a multigraph in which every vertex is even and (as in part (a)) the number
of edges is even. Prove that it’s possible to color half of G’s edges red and the other
half blue in such a way that every vertex x is the endpoint of 1

2 deg(x) red edges and
1
2 deg(x) blue edges.

c) Prove by induction on k that for all k ≥ 0, every 2k-regular bipartite multigraph has
a perfect matching.
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