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About this document

This is Part I of Start Doing Graph Theory. It covers what I consider to be the essential
background material for understanding the rest of the book, and begins with some motivation
for the study of graph theory.

Right now, only parts I through IV are ready. When the book is finished, I plan to provide a
variety of ways to read it: a single PDF of the whole book, several smaller PDFs like this one,
and eventually an HTML version. For now, think of this document as a preview!

This document is licensed under a Creative Commons Attribution-ShareAlike 4.0 International
License: see https://creativecommons.org/licenses/by-sa/4.0/ for more information.
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1 Modeling problems with graphs

The purpose of this chapter

Before you begin learning about specific problems in graph theory, I want to convince you that
graph theory is useful. Well, of course I would say that—I’m a graph theorist! However, one of
the reasons I’m firmly convinced that graph theory is one of the most highly applicable areas
of math is that I often find it fruitful to think about the world graph-theoretically even when
I’m not trying to solve problems in graph theory.

This comes easier to me, because I’ve spent many years with all this graph-theoretic language
at my fingertips. It will not come easily to you at first, when you don’t know any graph theory.
So one of them things I want to do here is to show you how I think about turning a problem
into a graph. Stop and think about it yourself! Think about it with each new example.

I want to limit myself to examples that are simple enough to fully explain in this chapter.
However, I also want to give complete examples that I can fully describe to you. Finally, I
want to give you a variety of examples: I want to show you different types of problems in graph
theory, and I want to show you very different flavors of applications, as well.

I will ask many questions about the graphs in this chapter, and I will often give formal math-
ematical names for the answers to those questions. However, I will not answer the questions
here, and you should not feel obligated to learn any of the fancy terminology yet, just the
basic concepts of vertices and edges. If you become curious about the answers to any of these
questions—good! However, you will have to wait until a later chapter.

1.1 Coloring the cantons of Switzerland

Switzerland (formally known as the Swiss Confederation) is made up of 26 cantons. On a map,
you will often see these drawn in different colors, to make the borders between different cantons
clearer to see. As a result, it’s particularly important to choose the colors for each canton so
that adjacent cantons receive different colors.

I found the map in Figure 1.1 on Wikipedia [4], and it uses 7 colors to achieve this effect. This
is not ideal, practically speaking, for a couple of reasons:

• The more colors you use, the harder it is to choose a colorblind-friendly palette of colors.

• Switzerland has many lakes, which are light blue in Figure 1.1. So it would be better if
we had fewer colors and did not have to use a shade of light blue for any of the cantons.
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Figure 1.1: A map of the cantons of Switzerland

How many colors are necessary to color the cantons of Switzerland?1 The answer to that
question is called the chromatic number of the graph that describes the problem—but to say
that properly, we first have to say what a graph is.

This is not the same “graph” that you would encounter in high school algebra! Blame the
Greeks: in Greek, the root “graph” just means “picture”, and there are quite a few things in
mathematics that we want to draw pictures of, so there is some overlap in terminology as well.

Unfortunately, the word is particularly awkward in the context of graph theory, because here
the graphs are specifically not pictures! Instead, a graph is going to be exactly the mathematical
object that we need to ask questions like, “How many colors are necessary to color the cantons
of Switzerland?” Before giving the definition, it’s worth thinking about the things we do and
don’t need to know:

• We don’t need to know that the canton of Thurgau is in the north part of eastern Switzer-
land, nor that it’s shaped roughly like a shark (in my opinion).

• We also don’t need to know that it’s called “Thurgau”, as opposed to “Thurgovia” (its
anglicized name) or “20” (the numerical label it is given in Figure 1.1) or anything else.
We will need to refer to the cantons individually somehow, because it would be very hard
to talk about which cantons get which colors, but it doesn’t matter at all which names
we give them.

• We do need to know that Thurgau (or 20, or whatever we choose to call it) borders
Schaffhausen, St. Gallen, and Zürich: if we want to color the map so that adjacent cantons
get different colors, then these are the colors we’ll need to distinguish.

For example, consider the diagrams in Figure 1.2, in which the cantons have been replaced by
short numerical labels or even just plain dots, and their placement only loosely reflects their

1If you already know a bit of the relevant theory, and think that you’ve heard of a powerful result that solves
this problem: Switzerland has a bit of a surprise for you! The full solution takes a bit more work.
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Figure 1.2: Two schematic representations of the Switzerland graph

geographic location. This is just as good for our purposes; maybe even better, because it does
not include any distracting details!

Even having a diagram at all is a concession to our human needs. If we wanted to try to use a
computer to solve the problem, we might simply enter the following (which, under the hood, is
how the two diagrams in Figure 1.2 are generated):

(1) -- (5) (1) -- (9) (1) -- (14) (1) -- (17) (1) -- (19) (1) -- (20)

(2) -- (3) (2) -- (4) (2) -- (6) (2) -- (7) (2) -- (10) (2) -- (11)

(2) -- (22) (2) -- (23) (2) -- (24) (2) -- (26) (3) -- (5) (3) -- (6)

(3) -- (7) (3) -- (9) (3) -- (19) (4) -- (5) (4) -- (6) (4) -- (7)

(4) -- (8) (4) -- (18) (4) -- (21) (4) -- (23) (5) -- (7) (5) -- (8)

(5) -- (9) (5) -- (17) (6) -- (7) (8) -- (17) (8) -- (18) (9) -- (19)

(10) -- (22) (10) -- (24) (11) -- (13) (11) -- (19) (11) -- (26)

(12) -- (13) (13) -- (19) (13) -- (26) (14) -- (20) (15) -- (16)

(15) -- (17) (16) -- (17) (17) -- (18) (17) -- (20) (18) -- (21)

(21) -- (23) (22) -- (23) (22) -- (24) (22) -- (25);

With that in mind, let us finally give the definition of a graph, which will reflect all of these
thoughts and only keep what is truly important.

Definition 1.1. A graph G is a pair (V,E) where:

• V is a set of arbitrary objects called vertices; a single one is called a vertex. In the
Switzerland graph, V is the set of the 26 cantons. We write V (G) for the set of vertices
of a graph G.

• E is a set of edges: each edge is an unordered pair of vertices, or just a set of two vertices.
In the Switzerland graph, E is the set of all pairs of cantons that share a border. We write
E(G) for the set of edges of a graph G.

The philosophy behind this definition is that the edges represent some kind of symmetric re-
lationship between whatever kind of objects the vertices are: in our case, sharing a border.
Situations like “sharing a border” are a common way to obtain a graph, and a lot of secondary
terminology in graph theory reflects this sort of application:
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Figure 1.3: The Towers of Hanoi puzzle

Definition 1.2. If a graph G contains vertices x and y and an edge {x, y}, then we say that x
and y are adjacent, or that x is a neighbor of y (and vice versa).

Definition 1.3. The edge {x, y} itself, in that case, might be said to go between x and y, or
to join x and y.2

Definition 1.4. We call x and y the endpoints of the edge {x, y}. For a slightly fancier option,
we might say that x and y are incident on the edge {x, y}, or that edge {x, y} is incident on
x and y.

From now on, whenever possible, we will write the edge {x, y} simply as xy, only using set
notation when it’s necessary to avoid ambiguity. For example, we would not want to represent an
edge in the Switzerland graph as “117”, because it’s not clear if this means {1, 17} or {11, 7}.

Later on in this book, we will define a coloring of a graph to be a function from V to some
set C whose elements we will call “colors”. An actual non-mathematical coloring of a map,
such as in Figure 1.1, can be described by such a function: for example, f(20) = blue might
describe coloring Thurgau blue. In this model of coloring, we will see how to prove lower and
upper bounds on the number of colors needed.

One final note: according to some people, what we’ve defined here is not a fully general graph
but a simple graph. What those people call a graph, I will call a multigraph; I will define
this term in Chapter 4.

1.2 The Towers of Hanoi puzzle

In the Towers of Hanoi puzzle, you have three pegs, and some number of disks of different sizes
stacked on the pegs. Initially, all the disks are placed on one peg, sorted by size (with the
smallest disk on top), as shown in Figure 1.3.

In this puzzle, you are allowed to move the disks in a limited way: in a single move, you can
lift the top disk on a peg, and put it down on another peg, provided you do not place a larger
disk on top of a smaller one. Placing a larger disk on a smaller one is always forbidden. The
goal of the puzzle is to move all the disks from one peg to another.

How can we model this puzzle as a graph? This is a much trickier question than in the previous
section, and the answer may be counterintuitive the first time you see something like it. When
I’ve asked the question to clever students new to graph theory, they’ve been tempted to start

2I would avoid using the words “connect” or “connected” in this context; they are somewhat overloaded in
graph theory.
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Figure 1.4: The graph representing a 2-disk Towers of Hanoi puzzle

with either the disks or the pegs as the vertices, which turns out not to lead us anywhere
fruitful.

To arrive at a useful answer, I suggest thinking as follows: how can we define a graph that will
know everything about the rules of this puzzle, so that when we try to use graph theory to
solve it, we will not need to know anything? Our graph does not need to be a small, efficient
representation of the rules, either. On the contrary: if the solution to the puzzle (which may
be a very long sequence of moves) is to be found anywhere in the graph, then the graph will
have to be pretty big.

The strategy we take to model the Towers of Hanoi puzzle as a graph G is to do the following:

• Let the vertex set V (G) be the set of all possible states of the puzzle. For example, the
picture in Figure 1.3 is just one of the vertices. If we take the smallest disk and move
it to the middle peg, the result is a different state of the puzzle, represented by another
vertex. Our final goal is to have all the disks stacked up on a different peg, which is yet
another vertex.

• Let the edge set E(G) be the set of all possible pairs xy where it’s possible to turn
state x into state y by making a single move. Or, phrased more concisely: let two states
x, y ∈ V (G) be adjacent if a single move can turn x into y.

(This is a symmetric relationship: if we can move a disk from one peg to another, we can
always move it back.)

Question: In a graph, our edges should be unordered pairs, but the rule “a single
move can turn x into y” seems like an ordered relationship. Is this a
problem?

Answer: Not in this case, because if we can move a disk from one peg to another,
we can always move it back, so the relationship is symmetric. Puzzles
where we cannot always reverse a move we make are more difficult to
model.

As you might imagine, this definition of V (G) results in a large graph G indeed. So in Figure 1.4,
the graph G is illustrated for a version of the puzzle with only 2 disks: a small one and a large
one. The two-digit label on each vertex records the positions of the two disks: the first digit
records the position of the bigger disk, and the second digit records the position of the smaller
disk. In this way, the two-digit number describes the state of the two-disk Towers of Hanoi
puzzle. (In our definition, we said that V (G) is the set of all possible states of the puzzle, but
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we didn’t specify how the states of the puzzle are encoded. That’s because it doesn’t really
matter!)

Question: In Figure 1.4, which vertices represent our starting state and our final
state?

Answer: The vertices 11, 22, and 33 are the three vertices in which both disks are
stacked on the same peg; we want to get from one of these to another.

Question: What do the edges from vertex 12 to vertices 11, 13, and 32 represent?

Answer: The smaller disk can be moved from peg 2 to peg 1 or peg 3; these
moves give us the edges from 12 to 11 and 13. The bigger disk can only
be moved from peg 1 to peg 3, giving the edge from 12 to 32; it cannot
be moved to peg 2, because it cannot be placed on top of the smaller
disk.

Now that we have the graph, how do we think about solving the puzzle? To answer that
question, let’s think about what happens in the world of graph theory when we attempt to
solve the puzzle by moving disks around. Each time we lift a disk and move it to a different
peg, we go from one state of the puzzle to another: from one vertex to another. Suppose we
make m moves; then we can imagine recording the entire history of the moves we’ve made as a
sequence

x0, x1, x2, . . . , xm−1, xm

in which each term xi is a vertex in the Towers of Hanoi graph. The moves that we’ve made
are valid moves if it’s the case that for all i = 1, . . . ,m, the pair xi−1xi is an edge of the Towers
of Hanoi graph.

In graph-theoretic terminology, such a sequence is called a walk from x0 to xm, or an “x0−xm
walk” for short. When we’re talking about puzzles like the Towers of Hanoi, that’s a very
metaphorical walk: you could picture a little figure standing on the diagram in Figure 1.4 and
walking along the edges, but that figure exists only in your imagination. It would become
a much more literal walk in the Switzerland graph from the previous section! Suppose that
you live in Zürich, and you decide to go on a hike through Switzerland until you reach Geneva.
Then the sequence of cantons you walk through (updated every time you cross a border between
cantons) will be a walk in the Switzerland graph: a 1−25 walk where 1 is the Canton of Zürich
and 25 is the Canton of Geneva.

A solution to the Towers of Hanoi puzzle is a walk with very specific starting and ending vertices:
we want to start in a vertex x0 corresponding to all disks being on a single peg, and we want
to end in a vertex xm corresponding to all disks being on some other single peg. The length
of this walk, m, is the number of moves that we needed to make, so our second goal might be
to minimize this length and find the shortest solution.

The question of finding minimum-length walks in a graph is not only useful for puzzles. If
you were to ask your phone for walking directions from Zürich to Geneva, it would consult
a much bigger graph: the graph of possible pedestrian locations in Switzerland, at a fairly
low resolution, and with additional metadata such as walking times that we’re not considering
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Figure 1.5: A solution to fitting 18 zigzag tiles in a 10× 10 grid without overlap

yet. However, in that bigger graph, it would solve essentially the same problem of finding a
minimum-length walk!

1.3 A tiling puzzle

Here is a different kind of puzzle. (I promise that graph theory is not just good for puzzles!
However, puzzles are a very convenient application: they usually have much simpler rules than
the real world, so we can describe them cleanly using graph theory, and puzzle creators often
at least try to make their puzzles fun.)

Suppose that you have an infinite supply of shaped tiles. How many of them can you place
on a 10 × 10 grid without overlap? One possible optimal solution to this problem is shown in
Figure 1.5.

How did I find this solution? I did it by encoding the problem as a graph and using some tools
in Mathematica’s graph theory library. It’s not obvious how to represent this as a graph theory
problem, but here is what I ended up doing:

• Let the vertices be all ways to place a single tile on the 10× 10 grid.

• Put an edge between two vertices if the tile placements they represent are incompatible:
the tiles would overlap.

Question: How many vertices does this graph have?

Answer: The middle square of a tile can be in any of the 82 = 64 squares
that are not on the edges of the 10 × 10 grid. Once we pick where the
middle square goes, there are 4 ways to orient the tile, for a total of
64 · 4 = 256 placements.
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A solution to the puzzle is a collection of locations where we’ve placed tiles, so it’s a set of
vertices in this graph.

Question: Which sets of vertices are valid solutions to the puzzle?

Answer: A set of vertices tells us where to place tiles, but it’s only a valid solution
if none of the tiles we place overlap. Overlapping tiles are represented
by edges, so we want a set in which no two vertices are adjacent.

A set of vertices with no edges between them is called an independent set in a graph, and we
will look at the problem of finding these in Chapter 17.

In fact, there is a second way to think about the problem that’s equally good. We could
have defined two vertices to be adjacent if the tiles would not overlap. Reversing the rule for
adjacencies like this gives the complement of the original graph.

In the complement graph, a conflict-free solution corresponds to a clique: a set of vertices in
which any two vertices are adjecnt. Cliques and independent sets are both important; though
the problems they solve are equivalent, as we see here, sometimes one is more natural than the
other to think about, and sometimes we study the relationship between the two problems.

Finding the largest independent set in a 256-vertex graph is a lot for a human, but not out of the
reach of computer algorithms. On my laptop, it took 48 seconds to find the largest independent
set in the graph: longer than it took me to describe the problem to my computer!

1.4 Taking photos efficiently

Here is an application of graph theory to engineering.3 Suppose you want to inspect a man-
ufactured part for quality by first taking photos of it from many different angles. You don’t
have to do this yourself: you have a many-jointed robot arm with a camera at the end, and the
robot arm can move around to take the pictures for you. How can you program the robot arm
to take the photos as efficiently as possible?

Just as in the Towers of Hanoi puzzle, we can describe this problem in terms of walks through a
graph, though the setup and our goals are both different. This leads us to a good model of the
problem with graph theory: if we want the robot arm’s trajectory to be a sequence of vertices
in a graph, then each vertex should be a position the robot arm can be in. We may as well
limit the vertices to just the positions in which we want the robot arm to take a photo—those
are the interesting ones.

Question: Why not take our vertex set to be the set of all positions the robot arm
can be in?

Answer: The only reason not to is that there might be too many of these. In
fact, if you imagine the robot arm moving continuously, there might be
infinitely many vertices, which is definitely too many!

3I found it in a 2022 paper by Bottin, Boschetti, and Rosati [1], but I am not an expert in robotics, so I don’t
know enough to put that paper in the context of its field—I just thought it was cool.

11



Just as in the Towers of Hanoi graph, we want our edges to represent ways that the robot arm
can move. However, in principle, from any position, the robot arm can twist itself around to
move to any other position. There might not be a good notion of “elementary” motions: we
might even end up making all pairs of vertices adjacent.

Question: Which relevant piece of information is missing from such a model?

Answer: The time that it takes for the robot arm to move from one position to
another.

In such an application, it makes sense to consider a weighted graph. Each edge in the graph
represents a movement of the robot arm from one state to another, and it may well be that
every pair of states has an edge between them. However, some motions take more time than
others, so each of our edges has a nonnegative real number linked to it: the time to complete
that motion. That’s what a weighted graph is: each edge has a number on it that we call its
weight, or perhaps its cost.

The example of the robot arm is only one instance of this problem appearing in applications:
there are many situations that can be modeled by visiting all the vertices of a graph as efficiently
as possible!

Question: If we have a walk in a weighted graph, what quantity measures how
good it is?

Answer: Instead of the length of the walk, we measure its total cost (or total
weight): the sum of the weights of the edges. In our application, that’s
the time it takes the robot to visit all the photo-taking positions and
take all the photos.

An ordinary graph can be thought of as a weighted graph in which every edge has the same
weight, which might as well be 1. (We can also pretend that every edge the graph doesn’t
have is present with a weight of ∞, so that we really really don’t want to use it in an efficient
path.) In this case, a perfect solution to the problem would be a walk through the graph that
visits every vertex exactly once: if there are n vertices, the walk takes n− 1 edges, which is the
least number possible. Such a walk has a special name: it is a Hamilton path in the graph.
Hamilton paths are discussed in Chapter 16 of this book.

The very first time an instance of this problem was considered was as a mathematical puzzle!
In chess, the “knight tour” problem is to move a knight around the chessboard and visit each
square exactly once. The graph we consider for this problem is the 8×8 knight graph, shown in
Figure 1.6a: the graph with a vertex for every square of the chessboard, and edges representing
the valid knight moves. A Hamilton path in this graph, shown in Figure 1.6b, is precisely a
knight tour of the chessboard.

12



(a) The 8× 8 knight graph (b) A Hamilton path in the graph

Figure 1.6: The knight tour problem
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Figure 1.7: Two ways to think about matching cars to people

1.5 A final puzzle: match the cars to their drivers

A final flavor of puzzle that is secretly all about graph theory is the “logic grid puzzle”, or
“matching puzzle”. Here is a beginner-level example.

Five friends named Rod, Sal, Teresa, Victor, and Whitney own cars in five different colors:
white, blue, black, red, and green. The following three things are known about the colors of
their cars:

1. Neither Victor nor Teresa own a car in a color that appears on the United States flag
(red, white, or blue).

2. Even though the sounds of their names would suggest it, Rod’s car is not red andWhitney’s
car is not white.

3. Rod and Victor like bright colors, and would not drive a black or white car.

Given this information, can you identify the color of the car each of them drives?

The classic way to solve a puzzle like this is to draw a grid to represent the data; in this case,
the rows would be the 5 people in the problem, and the columns would be the 5 colors. Then,
the cells of the grid representing impossible combinations are shaded in to eliminate them: in
Figure 1.7a, this is shown with a number in each shaded cell indicating the statement that lets
us eliminate it. From there, we can try to make deductions and use them to eliminate more
cells. I have given you an example that has a unique solution, so you can try solving it, if you
like.

13



Figure 1.7b shows another way to think about the logic puzzle: as a graph. In this graph,

• The vertices come in two types: five vertices representing the people (labeled R, S, T,
V, W in the diagram) and five vertices representing the colors (labeled w, u, b, r, g and
shaded in the diagram).

• There is an edge from each person to each car the three conditions permit them to drive.

This graph is called a bipartite graph because its vertices can be split into two non-overlapping
sets such that all edges have one endpoint in each set. In this case, the two sets are the people
and the cars. The solution to the puzzle is a perfect matching in the graph: a set of edges
that have each of the vertices as an endpoint exactly once. Both of these concepts will be
introduced in detail in Chapter 12.

Question: How many edges does a perfect matching contain?

Answer: In this problem, it will be 5 edges. In general, if our graph has n vertices,
a perfect matching should have n/2 edges, because each of the edges has
2 endpoints, covering 2 of the n vertices.

Figure 1.7b is not necessarily the best visualization if you want to try to solve the logic puzzle.
However, thinking about the problem as a graph is rewarding for two reasons:

1. We can make connections to other problems that look superfically different in how they’re
phrased, but turn out to be the same problem in the language of graph theory.

Perfect matchings are not just for logic grid puzzles! On a college campus, they can
be used for matching together instructors with classes, or interns with internships, or
roommates in college dorms. They are also a common subroutine for more complicated
optimization problems.

2. There are general graph-theoretic guarantees that apply to all these applications equally
well. Later on in this book, we will see what conditions guarantee the existence of a
perfect matching, and even investigate whether the solution is unique.

Question: Suppose a graph has n = 99 vertices. Then a perfect matching should
have n/2 edges, which is 49.5. How can we make sense of this?

Answer: In a graph with 99 vertices (or any other odd number), a perfect match-
ing cannot exist—so it’s okay that our formula gives a nonsense answer.
If we have 99 objects, we cannot divide them into pairs; one object will
be left out at the end.

1.6 Practice problems

1. The country of Hungary is divided into 7 regions, which are further subdivided into 19
counties (and the capital, Budapest, which is not part of any county). Look these up on a
map of Hungary; then, draw a graph diagram, similar to one of the diagrams in Figure 1.2,
of
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a) The 7 regions, if you just want a bit of practice.

b) The 19 counties and Budapest, if you want to draw a bigger graph.

2. Briefly explain (without checking any cases by brute force) why the cantons of Switzerland
cannot be colored with just three colors so that no two adjacent cantons have the same
color.

3. To study the graph representing a 3-disk Towers of Hanoi puzzle, we might label the states
by 3-digit sequences 111 through 333; each digit represents the location of a disk, from
largest to smallest.

For this problem, let Hn denote the n-disk Towers of Hanoi graph; Figure 1.4 is a diagram
of H2.

a) Draw only one part of H3: the part containing the 9 vertices

{111, 112, 113, 121, 122, 123, 131, 132, 133}.

b) Extrapolate from what you’ve done to draw all of H3.

c) How many vertices does Hn have, as a function of n?

d) How many edges does H2 have? What about H3? What about Hn, as a function
of n?

4. The zigzag tile graph from this chapter is too large for you to draw by hand, so let’s look
at a much simpler problem of the same type.

Suppose we are trying to place 2× 2 square tiles on a 4× 4 grid without overlap.

a) Draw a diagram of the graph where the vertices are ways to place a single 2× 2 tile
on the grid (there should be 9 vertices), with an edge between two vertices when the
tile placements they represent are incompatible.

b) Find an independent set in the graph representing the “boring” solution, which places
four 2× 2 square tiles covering the entire grid.

c) Find some other interesting non-overlapping tile placement in the grid, and find the
independent set in your graph that corresponds to it.

5. An interval graph is a graph whose vertices are intervals of the real line, with an edge
between two vertices when the two intervals overlap.

a) Draw a diagram of the interval graph with vertices [8, 13], [9, 11], [10, 14], [12, 15],
[16, 18], [17, 19].

b) Suppose that the intervals represent times of day that certain events are happening
(for example, TV shows you want to watch). What would an independent set in this
graph correspond to?

6. This is more of a puzzle than a graph-theoretical question: find a way to fit 12 zigzag-
shaped tiles into an 8 × 8 grid with no overlaps. (How do we know that this is optimal
without the use of a computer program?)
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7. Find a way to color this tiling using only 3 colors so that no two tiles that share a border
have the same color.

8. A knight in chess moves by jumping to another square two steps in one direction and one
step in a perpendicular direction. I like to describe this as a jump to another location
exactly

√
5 units away. (Some knight moves are illustrated in Figure 1.6b.)

a) (A puzzle) Find a knight tour of the 5×5 chessboard, shown below (a Hamilton path
in the 5× 5 knight graph).

b) (A math problem) Prove that every knight tour that can be found as an answer to
part (a) must begin and end on one of the dark-colored squares.
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2 Isomorphisms and subgraphs

The purpose of this chapter

The definition of a graph isomorphism is sufficiently fundamental that no self-respecting graph
theory book could skip it. Most authors wouldn’t put this chapter so close to the beginning of
the book, though.

The reason I wanted to introduce isomorphic graphs early on is for the sake of the isomorphism
game in Section 2.2. By playing this game, you can discover concepts like vertex degree,
subgraphs, connected components, and others naturally: that is, you come up with them because
you need them for something. Later chapters will tell you the full story of these concepts, and
I will then try to motivate them by telling you what they’re good for—but another answer to
what they’re all good for is to act as isomorphism invariants.

2.1 A plethora of Wagners

s
t

u

v
w

x

y

z

(a) A labeled diagram of the Wagner graph (b) An unlabeled diagram of the Wagner graph

Figure 2.1: Two drawings of the Wagner graph

Let’s begin by looking a picture; specifically, Figure 2.1, which shows two diagrams of a graph
known as the Wagner graph. (The Wagner graph is a small graph with many interesting
applications, which is named after graph theorist Klaus Wagner; we will see it again later in
this book.) What’s going on in this picture?

The answer is simple: Figure 2.1a is a labeled diagram, and Figure 2.1b is unlabeled. Perhaps
today we would like to call the Wagner graph G, and we’d like it to have vertex set V (G) =
{s, t, u, v, w, x, y, z} and edge set E(G) = {st, sw, sz, tu, tx, uv, uy, vw, vz, wx, xy, yz}. It would
be fair to say that both of the diagrams in Figure 2.1 are diagrams of this graphG; it’s simply that
in Figure 2.1a, we chose to label the vertices, and in Figure 2.1b, we did not. This is something
we’ll often do when the labels don’t matter. If the labels did matter, then Figure 2.1b would
be a bit ambiguous, which brings us to the next example. . .
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(a) The Wagner graph G
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(b) Also the Wagner graph G
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(c) Another graph H

Figure 2.2: The Wagner graph. . . and a friend?

Figure 2.2 shows three diagrams. The first, Figure 2.2a, shows the very same diagram of the
Wagner graph G again, for reference. However, Figure 2.2b is also a diagram of G, even though
it looks different! The graph in the diagram has the same 8 vertices {s, t, u, v, w, x, y, z} and the
same 12 edges {st, sw, sz, tu, tx, uv, uy, vw, vz, wx, xy, yz}. According to our definition, that’s
all there is to a graph. It’s irrelevant that the vertices have been moved around so that the
shape is now unrecognizable.

Meanwhile, the graph in Figure 2.2c, which we’ll call H, is clearly different. Its vertex set
is V (H) = {s, a, n, d, w, i, c, h}, which is not the same set as V (G), so it feels unnecessary to
even mention that the edge set E(H) = {ad, ah, an, ch, cs, cw, di, ds, hi, hw, ns, nw} is not the
same set as E(G). And yet, Figure 2.2b is almost identical to Figure 2.2c: they have vertices
and edges in all the same places, with only the labels changed! If you think about the sort
of questions we asked in Chapter 1—for example, the largest number of vertices we can select
without picking two adjacent vertices—it’s clear that any answer we find in G will also work in
H, and vice versa.

Question: In the graph G, the set {t, w, y} is independent: no two vertices in this
set are adjacent. Does this correspond in any way to an independent
set in H?

Answer: Yes, but we have to do some “translation”. The vertices t, w, y are in
the same place in Figure 2.2b as the vertices c, n, i in Figure 2.2c, so
{c, n, i} is an independent set in H.

We say that graph H is “isomorphic” to graph G: by changing the names of the vertices of G, we
can turn it into H. If we had to describe how G corresponds to H without drawing the diagram,
we’d want to list out the correspondences between the vertices: vertex s in G corresponds to
vertex s in H, vertex t in G corresponds to vertex c in H, and so on. The mathematical object
that describes such a correspondence is a function: a function φ : V (G) → V (H). Not just any
function will do, however:

Definition 2.1. A function φ : V (G) → V (H) is an isomorphism from G to H if it satisfies
the following properties:

• φ is a bijection: for every vertex y ∈ V (H) there should be a vertex x ∈ V (G) such that
φ(x) = y. In other words, φ should have an inverse φ−1 : V (H) → V (G).
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This makes the function a true correspondence, pairing each vertex in one graph with a
vertex in the other.

• φ preserves the edges: for every two vertices x, y ∈ V (G), we have the equivalence

xy ∈ E(G) ⇐⇒ φ(x)φ(y) ∈ E(H).

In other words, applying the function φ to go from G to H does not change which vertices
are adjacent to each other.

Further, we say that G and H are isomorphic or G is isomorphic to H if there exists
an isomorphism from G to H.

You should not be surprised by the two properties we asked for in this definition. If you think
about the things you’d do to check if the diagrams in Figure 2.2b and Figure 2.2c are the same,
the two properties are just formally describing what you’d do.1 First, you’d check that for every
vertex in one diagram, there’s a vertex in the same place in the other diagram (verifying that
φ is defined on all of V (G), and that it’s a bijection). Second, you’d want to check that every
edge drawn in one diagram is also present in the other diagram (verifying that xy ∈ E(G) if
and only if φ(x)φ(y) ∈ E(H)).

Figure 2.2 suggests a particular isomorphism φ, given by the following table:

vertex of G s t u v w x y z

φ(vertex) s c h a n w i d

This is one possible concise way to specify an isomorphism, although for small graphs, a diagram
like in Figure 2.2 is just as good. You should think of φ as being like a dictionary that translates
from names in G to names in H. In the “language” of G, a sentence like “s is adjacent to t, but
not to u” is true. The same sentence is true in H, but needs translation first! When translated,
it becomes “φ(s) is adjacent to φ(t), but not to φ(u)”, or “s is adjacent to c, but not to h”.

(Just as with foreign languages, such a dictionary can have cognates—vertices like s that have
the same role in both graphs. It can also have false cognates: both graphs have a vertex w, but
G’s w does not correspond to H’s w.)

In practice, the best reason to work with the function φ formally is in a proof: if you have two
graphs of arbitrary size given by abstract rules, and you want to prove they’re isomorphic, then
you can’t draw a diagram—you have to give an isomorphism and verify that it works. Here’s
an example of such a proof:

Proposition 2.1. For all even integers n = 2k, the following two graphs are isomorphic:

(i) The graph Mn with V (Mn) = {x1, x2, . . . , xn} and E(Mn) = {xixi+1 : 1 ≤ i ≤ n − 1} ∪
{xnx1} ∪ {xixi+k : 1 ≤ i ≤ k}.

(ii) The graph M ′
n with V (M ′

n) = {y1, . . . , yk} ∪ {z1, . . . , zk} and E(M ′
n) = {yizi : 1 ≤ i ≤

k} ∪ {yiyi+1 : 1 ≤ i ≤ k − 1} ∪ {zizi+1 : 1 ≤ i ≤ k − 1} ∪ {ykz1, zky1}.
1With the diagram, though, there’s a handy trick. While looking at Figure 2.2, cross your eyes so that Figure 2.2b
and Figure 2.2c are superimposed in your vision. Technically, what happens is that your left eye is looking
at Figure 2.2c and your right eye is looking at Figure 2.2b. You should see a single graph, with only some of
the letters shimmering in your vision because they differ between the diagrams. If the two diagrams disagree
in a vertex or edge, that vertex or edge will also shimmer in your vision, and you’ll spot it instantly!
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Question: What is the connection between this proposition and the diagrams in
Figure 2.2?

Answer: When n = 8, both M8 and M ′
8 are isomorphic to the Wagner graph!

Moreover, if we draw M8 by putting x1, . . . , x8 in a circle, we get a
diagram that looks like Figure 2.2a. If we drawM ′

8 by putting y1, . . . , y4
in a big square and z1, . . . , z4 in a smaller square inside it, we get a
diagram that looks like Figure 2.2b or Figure 2.2c.

Proof. We will prove that the following function φ : V (Mn) → V (M ′
n) is an isomorphism

from Mn to M ′
n:

φ(xi) =

{
yi 1 ≤ i ≤ k

zi−k k + 1 ≤ i ≤ n.

This is a bijection, because it has an inverse: φ−1(yi) = xi and φ
−1(zi) = xi+k for k = 1, . . . , n.

Next, we check that φ maps vertices adjacent in Mn to vertices adjacent in M ′
n. There are

several cases to check, because we defined E(Mn) as the union of three sets, and also because
φ has a piecewise definition.

1. For an edge of the form xixi+1 with 1 ≤ i ≤ k− 1, φ(xi) = yi and φ(xi+1) = yi+1, and all
pairs yiyi+1 are edges of M ′

n. Similarly, for an edge of the form xixi+1 with k ≤ i ≤ n− 1,
φ(xi) = zi−k and φ(xi+1) = zi+1−k, which are zj and zj+1 for j = i− k. All pairs zjzj+1

are edges of M ′
n for 1 ≤ j ≤ k − 1.

2. For the edge xkxk+1, we have φ(xk) = yk and φ(xk+1) = z1, and we specifically included
ykz1 as an edge of M ′

n. Similarly, for the edge xnx1, we have φ(xn) = φ(x2k) = zk and
φ(x1) = y1, and we specificially included zky1 as an edge of M ′

n.

3. For an edge of the form xixi+k with 1 ≤ i ≤ k, φ(xi) = yi and φ(xi+k) = zi, and all pairs
yizi are edges of M ′

n.

We have an if-and-only-if statement, so normally the next step would be to check the converse:
either that φ sends non-adjacent vertices in Mn to non-adjacent vertices in M ′

n, or that φ−1

sends adjacent vertices in Mn to adjacent vertices in M ′
n. In this case, however, we can skip

that step by doing some counting instead.

From the definitions, |E(Mn)| = (n−1)+1+k = 3k and |E(M ′
n)| = k+(k−1)+(k−1)+2 = 3k:

both graphs have the same number of edges. We already know that φ is a bijection that sends
each of the 3k edges of Mn to an edge of M ′

n. This “uses up” all 3k edges of M ′
n. So for a pair

of vertices that are not adjacent in Mn, their images cannot be adjacent in M ′
n, verifying the

converse.

This completes the proof that φ is an isomorphism from Mn to M ′
n, showing also that the two

graphs are isomorphic.

A special kind of isomorphism is a automorphism: an isomorphism from a graph G to itself.
That definition doesn’t seem useful; we already know that G is the same as G, so why do we
need an automorphism? In fact, every graph G always has one automorphism, the identity or
trivial automorphism: the function φ : V (G) → V (G) given by φ(x) = x for all x ∈ V (G).
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(c) The graph G3

Figure 2.3: A three-graph set for the isomorphism game

The reason automorphisms are studied is that the non-identity automorphisms reveal symme-
tries of the graph. For example, looking at Figure 2.2b, we see that the Wagner graph G has
a vertical line of symmetry: it looks exactly like its own mirror image if you swap left and
right. The formal way to state this, independent of the diagram we draw, is that the function α
swapping left and right in the diagram is an automorphism: the function given by

vertex of G s t u v w x y z

α(vertex) v u t s z y x w

In Figure 2.2a, we see a different kind of symmetry: the shape of the diagram is unchanged if
it is rotated 45◦. This corresponds to the automorphism β given below:

vertex of G s t u v w x y z

β(vertex) t u v w x y z s

Different diagrams can make different automorphisms easier to see, although the automorphism
does not depend on the diagram: α and β are automorphisms of G directly from the definition,
regardless of how we draw G. More complicated symmetries might not even be possible to
illustrate in a diagram!

2.2 The isomorphism game

How do we find an isomorphism between two graphs when their diagrams don’t completely line
up? And when an isomorphism doesn’t exist, how can we tell? We don’t want to use brute
force: with two n-vertex graphs, there are n! possible bijections, which is too many to check by
hand even for fairly small n.

To teach you how to do it, I will teach you to play the “isomorphism game”. In this game, I
show you three graphs. Two of them are isomorphic to each other, and the third is different.
The goal is to identify which graph is the odd one out, and to find an isomorphism between the
other two. Let me show you how the game is played on an example.

In Figure 2.3, if we consider the possibility that G1 and G2 are isomorphic, how could we begin
to find the isomorphism? A good start is to look for a distinguishing feature of some of the
vertices. Be careful, though! Something like, “In G1, vertex 8 is all by itself in the middle,
unlike the others, which are arranged in a circle” is not a distinguishing feature of vertex 8’s
role in the graph, but merely in the diagram; it’s not useful.
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We look, instead, for distinguishing features that can’t disappear when we rearrange the ver-
tices and relabel them. For example, vertex 8 of G1 has four neighbors: 1, 2, 4, and 6. An
isomorphism φ : V (G1) → V (G2) must preserve the edges 18, 28, 48, 68: the pairs φ(1)φ(8),
φ(2)φ(8), φ(4)φ(8), and φ(6)φ(8) must be edges of G2. So φ(8) is a vertex of G2 with four
neighbors: φ(1), φ(2), φ(4), and φ(8). Which vertex can that be? It can only be vertex 1. So
we can deduce that if the isomorphism φ exists, then φ(8) = 1.

This has given us a foothold, and now we can build on it: to a complete isomorphism, or to
a contradiction. Vertices 1, 2, 4, 6 (the neighbors of 8) in G1 must be sent to vertices 2, 3, 5, 8
in G2: the neighbors of 1, which is φ(8). But can we distinguish them further? Well, in G1, 1
and 2 are also adjacent to each other, so φ(1) and φ(2) must be adjacent. The only adjacent
pair of neighbors that vertex 1 has in G2 is the pair {3, 5}. So {φ(1), φ(2)} must be equal to
{3, 5}, in some order.

We don’t like the words “in some order”—that way lies brute-force checking of cases. But in
this case, there’s an explanation for it. Do you see that in Figure 2.3a, if we draw a straight line
passing through vertices 5 and 8, then it is a line of symmetry of the diagram? That symmetry
gives us an automorphism of G1, and that automorphism swaps vertices 1 and 2. This means
that vertices 1 and 2 play identical roles, as far as isomorphisms go: anything one of them can
do, the other can do just as well. We can arbitrarily decide φ(1) = 3 and φ(2) = 5 without fear
of an error. (See how useful automorphisms can be, after all?)

At this point, the rest of φ can be determined. The neighbors of 2 in G1 are 1, 3, and 8. The
neighbors of 5 = φ(2) in G2 are 1 = φ(8), 3 = φ(1), and 4. Two out of three neighbors have
already been matched up by φ, so the remaining pair must also go together: φ(3) = 4. Going
around the circle, we can find where φ sends 4, 5, 6, 7 and get the following isomorphism:

vertex of G 1 2 3 4 5 6 7 8

φ(vertex) 3 5 4 2 6 8 7 1

We’re halfway done with the game. How do we play the other half, and explain why G1 and
G3 are not isomorphic?

The argument begins with the same way; we look for a distinguishing feature. As before, if
ψ : V (G1) → V (G3) is an isomorphism, then ψ(8) must be a vertex of G3 with four neighbors:
ψ(1), ψ(2), ψ(4), and ψ(8). Which vertex can that be? Well, there is no such vertex! In G3,
vertices 1 and 8 have two neighbors, and the rest each have three neighbors; no vertex has four.
So ψ cannot exist: G1 and G3 are not isomorphic.

Question: Is it correct to say that G1 is not isomorphic to G3 because vertex 1 has
three neighbors in G1, but only two neighbors in G3?

Answer: No: an isomorphism is allowed to change which vertex is “vertex 1”.

Question: Is it correct to say that G1 is not isomorphic to G3 because G1 has three
vertices (3, 5, and 7) with two neighbors each, but G2 has only two such
vertices (1 and 8)?

Answer: Yes: if there were an isomorphism ψ : V (G1) → V (G3), then ψ(3), ψ(5),
and ψ(7) would be three different vertices with two neighbors each. But
there are not three such vertices in G3.
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Question: Is it correct to say that G1 is isomorphic to G2 because for every number
k, the two graphs have the same number of vertices with k neighbors?

Answer: No: we must find the isomorphism before we draw this conclusion. It’s
possible for two graphs to agree in this way, and yet not be isomorphic,
and you’ll see examples of this on the next page.

In general, to prove that two graphs are not isomorphic, it’s enough to find any difference
between the two graphs that any isomorphism must preserve: something that’s inherent to the
structure of the graph, and not a feature of the vertex labels or the way the graph is drawn.

Before telling you more about such properties, I will let you discover some of them for yourself
as you play the isomorphism game. (Try doing this yourself before you look at any spoilers.)

Problem 2.1. Determine which of the three graphs below is the odd one out, and find an
isomorphism between the other two.
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20 21 22
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26 27

28 29

Problem 2.2. Determine which of the three graphs below is the odd one out, and find an
isomorphism between the other two.
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Problem 2.3. Determine which of the three graphs below is the odd one out, and find an
isomorphism between the other two.
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Problem 2.4. Determine which of the three graphs below is the odd one out, and find an
isomorphism between the other two.
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Problem 2.5. Determine which of the three graphs below is the odd one out, and find an
isomorphism between the other two.
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2.3 Graph properties, or graph invariants

When playing the isomorphism game, you may say things like, “These two graphs are not the
same as that other graph, because these two graphs both X, and that other graph does not X.
But a graph that X can’t be isomorphic to a graph that does not X.” Whenever you can say
that, X is either called a “graph property” or a “graph invariant”:

Definition 2.2. A property of a graph (that is, a result of any kind that can be computed from
the graph) is called a graph property or graph invariant if, whenever two graphs G and H
are isomorphic, they must agree in that property.

Graph invariants can be binary (true or false), or numerical (like the number of vertices or
edges), or even more complicated, such as a sequence of numbers. They’re called “invariants”
because they can’t be changed by drawing the diagram differently, or by relabeling the vertices.
In other words, two isomorphic graphs have to agree on all graph invariants.

There is no difference between saying “graph invariant” or “graph property”, but using the
word “graph property” is also taking a philosophical stance. The implication when we say that
is that the only true graph properties—the only properties of graphs that are worth studying
in the discipline of graph theory—are graph invariants! I think this is true, though I will carve
one or two exceptions out for myself in a couple of pages.

Of course, as mathematicians we can’t just intuit our way into claiming something is a graph
property: we have to prove it. I will show you two of these proofs, one for a numerical property
and one for a true/false property. Lots of these proofs are very similar to each other, and
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become boring once you get the hang of them, but I encourage you to try writing one or two
yourself until you get to the point where you can see how you’d go about writing it before you
even start.

Proposition 2.2. The number of vertices and the number of edges of a graph are both graph
properties.2

Proof. In combinatorics, the classical way to prove that two sets are equal in size is to find a
bijection between them. So to prove this theorem, we want to show that if two graphs G and H
are isomorphic, then there’s a bijection between V (G) and V (H), as well as a bijection between
E(G) and E(H).

One of these proofs is very short! By definition, an isomorphism from G to H is a bijection
φ : V (G) → V (H), which is exactly what we needed, and which automatically means that
|V (G)| = |V (H)|. We conclude that the number of vertices is a graph property.

For the number of edges, we need to work harder: we need to use φ to construct a bijection
E(G) → E(H), which we’ll call φ′. For an edge xy ∈ E(G), we’ll define φ′(xy) to be the edge
φ(x)φ(y). There are two checks necessary to make sure that this is legitimate:

• φ′(xy) really is an element of E(H). That’s because φ is a graph isomorphism, so it
preserves edges: x and y are adjacent, so φ(x) and φ(y) must be adjacent, which means
that φ(x)φ(y) is an edge of H.

• The edge xy also goes by a different name: yx is the same edge. We want to make
sure φ′ does the same thing to it when it’s going by a different name. Fortunately,
φ′(yx) = φ(y)φ(x) is another name for φ(x)φ(y) = φ′(xy).

Next, we check that φ′ is a bijection. One way to do this is to construct an inverse for it, and
that’s convenient to do here because we already know that φ has an inverse φ−1 : V (H) → V (G).
So define φ′−1(xy) = φ−1(x)φ−1(y) for every edge xy ∈ E(H). As before, there are two checks to
make sure that this is legitimate, but they are the same as for φ′. Finally, we want to check that
φ′ and φ′−1 are inverses. For an edge xy ∈ E(G), φ′−1(φ′(xy)) simplifies to φ−1(φ(x))φ−1(φ(y))
or just xy; similarly, for an edge xy ∈ E(H), φ′(φ′−1(xy)) simplifies to xy.

This proves that φ′ and φ′−1 are inverses, so we conclude that φ′ is a bijection; this is exactly
what we needed to know that |E(G)| = |E(H)|, and that completes the proof that the number
of edges in a graph is a graph property.

For the next example, I will give you a graph invariant that feels ad-hoc and doesn’t have a name,
just to make the point that something ad-hoc with no name can still be a graph invariant.

Proposition 2.3. Having a vertex adjacent to all other vertices is a graph invariant.

2Some people like to say that the number of vertices in a graph is its order, and the number of edges is the
graph’s size. I try to stay consistent with this terminology, but it feels very unintuitive to me, so I won’t rely
on it to communicate.
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Proof. Let G and H be two isomorphic graphs, and let φ : V (G) → V (H) be an isomorphism
between them. Suppose that G has a vertex x adjacent to all other vertices of G; then to
complete our proof, we must show that H has such a vertex, too.

Well, vertex x in G corresponds to vertex φ(x) in H, so it’s natural to suppose that φ(x) is the
vertex of H adjacent to all others. Now we must prove it. To do so, let y be an arbitrary vertex
of H not equal to φ(x).

Because φ is an isomorphism, it’s a bijection, and has an inverse φ−1 : V (H) → V (H). So G
has a vertex φ−1(y); we know that φ−1(y) ̸= x because we picked y to be different from φ(x).

Since x is adjacent to all other vertices of G, and φ−1(y) is one of them, in particular x is
adjacent to φ−1(y). Because φ is an isomorphism, it preserves adjacency, which means that φ(x)
is adjacent to φ(φ−1(y)) = y. We chose y to be an arbitrary vertex of H other than φ(x), so
this proves that φ(x) is adjacent to all such vertices, completing the proof of the theorem.

Let me discuss some of the other graph invariants you may or may not have discovered in the
course of playing the isomorphism game.

Whether a graph is connected is a graph property; if it’s not, the number of connected com-
ponents and how big they are are graph properties. (Two vertices are in the same component
if you can get from one to the other by following edges; more on this in Chapter 3.)

Whether a graph has a “piece” of a certain form is also an invariant; to make this formal, we
will need the idea of subgraphs, which are discussed in the final section of this chapter.

If we’re careful, we can get a graph invariant out of vertex degrees: the degree of a vertex is
the number of edges incident on it.

We have to be careful because something like “the degree of vertex x” is not an invariant: an
isomorphism can change which vertex is x. But the binary property “there exists a vertex of
degree n” is invariant, and so is “the number of vertices of degree n”.

The ultimate way to track the vertex degrees would be a tally of how many vertices have each
degree, such as for example “5 vertices of degree 2, 4 vertices of degree 3, and 1 vertex of degree
4” for the first graph in Problem 2.1. It would be reasonable to call this a “degree tally”, but the
convention instead is to sort the degrees from largest to smallest (such as 4, 3, 3, 3, 3, 2, 2, 2, 2, 2)
and call this the degree sequence.

Here is a subtle example of a graph property: we say that a graph is planar if it can be drawn in
the plane without any edges crossing, and whether or not a graph is planar is a graph invariant.
This does not mean that “do any of the edges cross?” is a graph invariant—it’s not, because
it depends on the way the graph is drawn! But the potential to have a crossing-free drawing is
something that cannot be taken away with an isomorphism.

The subtlety in the previous paragraph is one of the exceptions that I wanted to mention
about what does and doesn’t count as an isomorphism. The other exception is that graph
theorists often study structures which are graphs plus some extra data: an example mentioned
in Chapter 1 is weighted graphs, with a number attached to every edge. When these come
into play, sometimes we stop looking at arbitrary graph isomorphisms and start looking only
at graph isomorphisms that “play nicely” with the extra data we’re considering. For example,
a weighted graph isomorphism from a weighted graph G to a weighted graph H is a graph
isomorphism φ with the additional property that for all edges xy ∈ E(G), the weight of xy
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(c) A spanning subgraph of G

Figure 2.4: The Wagner graph and some of its subgraphs

in G is the same as the weight of φ(x)φ(y) in H. If we restrict the isomorphisms we allow in
this way, then this expands the set of properties that no isomorphism can change, giving us
additional invariants.

2.4 Subgraphs and some common small graphs

Some of the graph invariants you may have made use of involve finding smaller graphs that
appear inside bigger ones. We introduce subgraphs to make this idea precise.

Figure 2.4 shows the Wagner graph—again!—and some of its subgraphs.

Definition 2.3. If G is a graph, a subgraph of G is simply a graph H that includes some of
G’s vertices and some of G’s edges: V (H) ⊆ V (G) and E(H) ⊆ E(G).

Keep in mind that we cannot include an edge xy in the subgraph unless we have included
vertices x and y; that edge just wouldn’t make sense.

There are two special types of subgraphs that deserve special mention. First:

Definition 2.4. If G is a graph, a spanning subgraph of G is a subgraph H with V (G) =
V (H).

There are no requirements to include any edges: one possible spanning subgraph is the subgraph
with all ofG’s vertices, but no edges at all. Figure 2.4c shows a spanning subgraph of the Wagner
graph.

Definition 2.5. If G is a graph, an induced subgraph of G is a subgraph that includes all
the edges it possibly could: all the edges xy ∈ E(G) such that x ∈ V (H) and y ∈ V (H). For a
subset S ⊆ V (G), we write G[S] for the subgraph of G induced by S: the unique induced
subgraph of G with vertex set S.

Figure 2.4b shows an induced subgraph of the Wagner graph: the subgraph induced by the
set {s, t, v, w, y}.

It’s also common to define a subgraph that contains almost of G by deleting vertices or edges.
There are two simple cases: if xy ∈ E(G), then we write G − xy for the subgraph including
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(a) The graph K5 (b) The graph P5 (c) The graph C5

Figure 2.5: Several common graphs

all vertices of G and all edges except edge xy, and if x ∈ V (G), then we write G − x for the
subgraph including all vertices of G except x and all edges except those incident on x. (Those
have to go; they have no meaning if x is no longer a vertex.) More generally, if S is a set of
vertices or of edges, we write G− S for the subgraph where all elements of S are deleted. For
example, Figure 2.4b could also be described as G− {u, x, z}, where G is the Wagner graph.

We can get graph invariants by looking at subgraphs of various graphs isomorphic to some fixed
graph H. Some terminology helps us concisely refer to this situation, which is very common
(especially when H is small):

Definition 2.6. A copy of H is a graph isomorphic to H; we often say that a graph G
contains a copy of H if G has a subgraph isomorphic to H.

For any graph H, the true/false property “contains a copy of H” and the numerical property
“the number of copies of H” are both graph invariants.

There are several families of graphs that are very commonly encountered, and so they’re given
names that any graph theorist would recognize. They are useful subgraphs to look for in a
graph, as well. I will define three of them in this chapter:

Definition 2.7. For any n ≥ 1, the complete graph Kn is the graph with vertex set {1, . . . , n}
and all

(
n
2

)
possible edges {i, j} where 1 ≤ i < j ≤ n. A copy of a complete graph is often referred

to as a clique.

Definition 2.8. For any n ≥ 1, the path graph Pn is the graph with vertex set {1, . . . , n} and
n− 1 edges: the edges {i, i+ 1} where 1 ≤ i ≤ n− 1.

Definition 2.9. For any n ≥ 3, the cycle graph Cn has all the vertices and edges of Pn, plus
one additional edge: the edge {1, n}.

Figure 2.5 includes an example of each of these families, but I have drawn unlabeled diagrams
of each of them. That’s because the exact vertex set is hardly ever relevant, and may also be
different if you consult other sources. If you want to answer questions like, “What is the number
of copies of C4 in the Wagner graph?” then the exact set V (C4) is irrelevant.

Really, we would like to say that C4 is an “unlabeled graph” whose vertices don’t have names.
We can’t really do that: if the vertices of a graph didn’t have names, we wouldn’t be able to
say which edges it has. However, the idea of unlabeled graphs is a useful fiction in counting
problems. We say that the number of unlabeled graphs of a certain type is the largest
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possible number of non-isomorphic graphs of that type. For example, there are 11 different
unlabeled graphs on 4 vertices. On the other hand, it is nonsense to ask, “How many graphs
on 4 vertices are there?” without the qualifier: there are infinitely many, because there are
infinitely many possible 4-element sets that could be the vertex set.

Question: Why does our definition of Cn require n ≥ 3?

Answer: For n = 1 and n = 2, adding the edge {1, n} to Pn doesn’t make sense.
When n = 1, we’d be adding the “edge” {1, 1}, and when n = 2, the
edge {1, 2} would already be present in P2. Later on, though, we will
encounter multigraphs that could be called C1 and C2.

2.5 Practice problems

1. Prove that none of these five graphs are isomorphic: find invariants distinguishing them
all from each other.

2. Find all 11 different unlabeled graphs on 4 vertices.

3. How many copies of C4 are there in the Wagner graph? How many copies of C5 are there?

4. Find all automorphisms of the graph shown below: that is, all functions

φ : {u, v, w, x, y, z} → {u, v, w, x, y, z}

that preserve the edges of the graph.

u

v

w

x

y

z

(Hint: there are four, and one of them is very boring.)

5. a) How many induced subgraphs with at least one vertex does the complete graph K4

have?

b) How many spanning subgraphs does K4 have?

c) How many subgraphs of any kind (but with at least one vertex) does K4 have? This
one is trickier; you will need to think about the structure of K4.

6. Let G and H be isomorphic graphs. Prove the following:
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a) G and H have the same number of vertices of degree 4.

b) If G contains a copy of K3, then H contains a copy of K3.

7. Define two vertices x, y of a graph G to be similar if there is an automorphism of G that
takes x to y.

a) Prove that if x and y are similar, then G− x and G− y are isomorphic. (Earlier in
the chapter, we defined G− x to be the subgraph induced by the set V (G) \ {x}: the
graph obtained from G by deleting x and all edges incident on x.)

On the other hand, the converse to (a) is false! Let G be the graph below:

1 2 3

4 5 6

7 8

b) Prove that G− 4 is isomorphic to G− 8.

c) Prove that 4 and 8 are not similar. (In fact, G has no isomorphisms other than the
identity automorphism.)

30



3 Walks, paths, and cycles

The purpose of this chapter

Without learning about walks in a graph first, we would find it hard to study almost anything
else. Do you want to understand regular graphs? Cycles are the quintessential regular graph.
Euler tours? A kind of closed walk. Trees? They are connected, and they have no cycles, both
properties that come back to this chapter. Matchings? Understanding augmenting paths is key
to finding larger matchings. I could go on, but I already have a section devoted to topics that
this chapter will help you understand: the table of contents.

At the end of this chapter, there are also a few topics that are here not because they’re crucial
for you to know now, but because they’re ideas that come up in graph theory over and over
again, and by seeing them early, you’ll become familiar with them sooner. There are many
problems, for example, that can be solved by a breadth-first search in a graph, and this is first
introduced in this chapter with the notion of distance.

I include the proof of Theorem 3.3 in this chapter, because it would be strange to postpone the
proof to an appendix; however, the natural place to study the proof is in Appendix B, because
it is a good early example of a proof by the extremal principle. Similarly, Lemma 3.1 is a good
example of unpacking definitions, which I discuss in Appendix A.

3.1 Walks and paths

Last time we looked at walks in a graph, it was in the context of the Towers of Hanoi puzzle,
in Chapter 1; this time, let’s look at a simpler puzzle.

To set up this puzzle, you will need three empty cups; ideally, they are empty mugs of beer,
because this puzzle is not difficult enough to challenge anyone sober for very long. They are
placed in a row on the table, right side up: ∪ ∪ ∪. A valid move in this puzzle is to take two
cups that are next to each other—the first two, or the last two—and flip them over. From the

∪ ∪ ∪ ∪ ∪ ∩

∪ ∩ ∪ ∪ ∩ ∩

∩ ∪ ∪ ∩ ∪ ∩

∩ ∩ ∪ ∩ ∩ ∩

Figure 3.1: The state graph of the three cup puzzle
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starting state, a single move can take us to the ∩ ∩ ∪ state if the first two cups are flipped, or
to the ∪∩∩ state if the last two cups are flipped. The goal of the puzzle is to flip all three cups
upside down.1

Figure 3.1 shows a graph of all the states possible in the three cups puzzle, where two vertices
are adjacent if it’s possible to move from one state to the other. (This is a symmetric relation,
because all valid moves are reversible.) A possible “history” of your victim’s fruitless attempts
to solve the puzzle is a sequence of vertices in which any two consecutive vertices are adjacent
in the graph: a sequence such as for example

∪ ∪ ∪, ∪ ∩ ∩, ∩ ∪ ∩, ∩ ∩ ∪, ∩ ∪ ∩.

Generalizing this idea, we make the following definition:

Definition 3.1. A walk in a graph G is a sequence x0, x1, x2, . . . , xk of vertices of G, such
that for each i = 1, . . . , k, vertices xi−1 and xi are adjacent: xi−1xi ∈ E(G). A walk whose first
vertex is x and whose last vertex is y is called an x − y walk.

Provided the condition defining a walk is satisfied, we can repeat vertices, and even walk back
and forth along the same edge many times if we so choose. It will later be useful to know that
a sequence of only a single vertex x is an x− x walk. (The condition that consecutive vertices
are adjacent is satisfied trivially, meaning that there is nothing to check.)

In the three cups puzzle, we are looking for a ∪ ∪ ∪−∩ ∩ ∩ walk, but if you think about it, the
freedom to revisit vertices isn’t really necessary.

Question: Suppose there were a solution to the three cups puzzle that passed
through the ∩ ∪ ∩ state multiple times. How could we get a shorter
solution?

Answer: We could skip all the steps between the first visit to ∩ ∪ ∩ and the last
visit. If there’s a way to solve the puzzle starting from ∩ ∪ ∩, we can
implement it the first time we’re in state ∩ ∪ ∩.

This reasoning works in general, not just for vertex ∩ ∪ ∩, and not just for this puzzle. So
a sequence of distinct vertices forming a walk can be an especially interesting sequence: in
the context of a puzzle like the three cups puzzle, it represents a solution without obvious
inefficiencies. This motivates the definition of a path.

Definition 3.2. A path2 is a walk in which no vertex appears more than once. (An x− y walk
which is a path is called an x − y path.)

1To make the puzzle appear possible to solve, you can do the following: set up the puzzle in the alternating
∪ ∩ ∪ state, and make a few moves back and forth before arriving at the desired ∩ ∩ ∩. Then explain that
you’re “resetting” the puzzle, and bring it back to an alternating state before letting your victim try solving
it—but make it, instead, the ∩ ∪ ∩ state. After this, the puzzle will be impossible. You can further disguise
the nature of the puzzle by using 5 cups instead of 3.

2I should mention that, although the terminology is fairly standard by now (the existence of Wikipedia, which
has picked a side, helps) there are many sources only a couple of decades old which use a different convention.
They say “path” when they mean “walk”, and then when they don’t want vertices repeated, say “simple
path” when they mean “path”. I will not do this.
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∪ ∪ ∪∪ ∪ ∩

∪ ∩ ∪ ∪ ∩ ∩

∩ ∪ ∪ ∩ ∪ ∩

∩ ∩ ∪∩ ∩ ∩

Figure 3.2: The two connected components of the three cup puzzle graph

In Chapter 2, we defined the path graph Pn: the graph with n vertices {1, 2, . . . , n} and n− 1
edges {1, 2}, {2, 3}, . . . , {n − 1, n}. This is closely related to the concept of a path: whenever
we have an n-vertex path in a graph G, it gives us a copy of the path graph Pn inside G. The
vertices of the copy of Pn are the vertices along the path, and its edges are the edges that we
know must exist between consecutive vertices. Going the other direction is also possible, more
or less: every copy of the path graph Pn inside G corresponds to an n-vertex path. However,
subgraphs isomorphic to Pn don’t have a preferred direction of travel: an x − y path and the
y − x path obtained by reversing it correspond to the same copy of a path graph.

Despite the slight inconsistency of whether we care about direction, it is often useful to switch
between two ways of thinking about a path: as a specific kind of walk (the way we defined it) and
as a specific kind of subgraph (a copy of Pn for some n). For example, if we define P to be the
path (x0, x1, x2, . . . , xn), it can later be convenient to refer to the edges {x0x1, x1x2, . . . , xn−1xn}
as E(P ), the “edges of P”.

It does not make sense to think of arbitrary walks in G as subgraphs of G, however: we cannot
recover the structure of the walk simply from knowing the vertices and edges used by the walk,
because they can potentially be used multiple times and in many different orders.

3.2 Connected graphs

Whether it’s in the three cups puzzle, the Towers of Hanoi puzzle, or a complicated graph that
appears in serious and dignified study of math, the first question we want an answer for is the
existence question: for which x and y does an x− y walk exist in the graph?

In the simplest scenario, the answer is always “yes”:

Definition 3.3. We say that a graph G is connected if an x−y walk exists for all x, y ∈ V (G).

The state graph of the three cups puzzle is not connected. We can demonstrate this fact (both in
this specific example, and in general) by showing how to split the vertex set into two parts with
no edges between them. This is done in Figure 3.2, where the two halves are “pulled apart”:
it is much easier to see here that there are no edges between {∪ ∩ ∪,∪ ∪ ∩,∩ ∪ ∪,∩ ∩ ∩} and
{∪ ∪ ∪,∪ ∩ ∩,∩ ∩ ∪,∩ ∪ ∩}.

When a graph is defined by a sufficiently nice combinatorial rule, such a split often comes with
a reason behind it. That is the case with the three cups puzzle. We could confirm that it has
no solution by checking each of the states ∪ ∪ ∪, ∪ ∩ ∩, ∩ ∩ ∪, and ∩ ∪ ∩ to verify that all
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possible moves from these states lead to another one of these states. But we obtain the most
insight—and have to exert minimal effort—if we notice that the two halves of the graph are
characterized by whether the number of ∪’s (cups which are right side up) is even or odd. A
move either increases the number of ∪’s by two, leaves it the same, or decreases it by two;
therefore it’s impossible to go from an odd-∪ state like ∪ ∪ ∪ to an even-∪ state like ∩ ∩ ∩.

Though a split into two pieces with no edges between them is sufficient to show that a graph
is not connected, sometimes it is possible to split the graph into even more pieces with no
edges between them. The most fine-grained split possible is a partition of the vertex set into
connected components.

Definition 3.4. If G is a graph, a connected component of G is a set C ⊆ V (G) such that

• Whenever x, y ∈ C, there is a x− y walk in G;

• If x ∈ C but y /∈ C, there is no x− y walk in G.

We can also think of a connected component C as a subgraph: the induced subgraph G[C].
The first part of the definition above tells us that the subgraph G[C] is connected; however, it
follows from the second part of the definition that there are no edges leaving C, so there is no
bigger connected subgraph containing C.

In the case of the three cup puzzle, the split into the left half and the right half of Figure 3.2 is
in fact the split into connected components. The two halves, each isomorphic to a cycle graph
C4, are connected subgraphs, so they are the two components of the three cup puzzle graph.

I’ve claimed that any graph can be broken up into connected components, but I’ve given you
no proof of this. It is too easy to believe that such a thing is true with no justification, so before
we prove it, let me try to persuade you that it isn’t quite so obvious after all.

Suppose, for example, that the edges in our graphs stopped being symmetric: that you could
walk somewhere, and not be able to get back. In that case, instead of being able to split the
graph into connected components, we’d end up with a hierarchy of vertices from which we can
reach fewer and fewer destinations—maybe even with some “dead end” vertices that we can
walk to, but never leave.

Or suppose that, unlike the infinitely-patient walker that we imagined when defining walks, we
consider a walker that gets tired, so that our walks should contain at most (say) 10 steps. Then
it’s possible that by going in different directions from vertex x, you can reach both vertices y
and z, and yet there is no component containing x, y, and z—because y is too far from z to
walk between the two.

So you should take a moment to appreciate the simplicity of the answer we’re about to get to
the question, “When is there an x−y walk in graph G?” It should be a bit remarkable that the
answer will be, “We can split up the set V (G) into several parts called connected components,
and the answer is ‘yes’ whenever x and y are in the same part, and ‘no’ otherwise.” In a slightly
different world, the answer could have been much more complicated!
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3.3 Equivalence relations

Let G be a graph. We define a relation ↭ on pairs of vertices x, y ∈ V (G): x ↭ y if there is
an x − y walk in G. I am not aware of an official name for this relation, but we might call it
“reachability”: x↭ y means that from x, we can reach y by following edges in G.

Question: In the three cup puzzle, for which vertices x does x↭ ∪ ∪ ∩ hold?

Answer: For the vertex ∪∪∩ itself, for its neighbors ∪∩∪ and ∩∩∩, and finally
for the vertex ∩ ∪ ∪ that can reach ∪ ∪ ∩ in two steps.

To proceed, we will need to prove the following result:

Lemma 3.1. The relation ↭ is an equivalence relation on V (G).

Before we do that, though, let’s talk about equivalence relations.

You may have already seen the definition elsewhere (or not). A relation ∼ on a set S is an
equivalence relation if it has three properties:

1. It is reflexive: for all x ∈ S, x ∼ x.

2. It is symmetric: for all x, y ∈ S, if x ∼ y, then y ∼ x.

3. It is transitive: for all x, y, z ∈ S, if x ∼ y and y ∼ z, then x ∼ z.

But these are not just nice properties we want to prove because we like how they sound! There
is a purpose to showing that something is an equivalence relation.

These three properties are exactly the things we need to check in order to know that we can split
up (or partition) S into equivalence classes: disjoint sets S1, . . . Sk such that S = S1 ∪ · · · ∪Sk
and we have x ∼ y exactly when x and y are in the same class. In the case of our relation ↭,
the equivalence classes will give us the connected components of a graph.

Proof of Lemma 3.1. Let’s check all three properties of an equivalence relation.

We check that ↭ is reflexive: for any vertex x, there is an x − x walk in G. Well, one such
walk that’s guaranteed to exist is the walk which is a sequence with only one term; x. (There
may or may not be others.)

We check that ↭ is symmetric: if there is an x − y walk in G, there is also a y − x walk.
Well, suppose that u0, u1, . . . , uℓ is an x − y walk (with u0 = x and uℓ = y). Then reverse it:
uℓ, uℓ−1, uℓ−2, . . . , u0 is a y − x walk. It starts at y, ends at x, and consecutive vertices in the
sequence are adjacent, because they were also consecutive in the y − x walk.

Finally, we check that ↭ is transitive. Suppose x, y, z are vertices in G such that there is an
x − y walk u0, u1, . . . , uℓ and a y − z walk v0, v1, . . . , vm. We know that x = u0, y = uℓ = v0,
and z = vm. Then there is also an x− z walk: the sequence

u0, u1, . . . , uℓ, v1, v2, . . . , vm.
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This definitely starts at x = u0 and ends at y = vm. All consecutive vertices are adjacent,
because they were already consecutive in the two walks we started with, with the exception of
one pair we need to look at more closely: uℓ and v1. These are adjacent because uℓ = y = v0,
and v0v1 are adjacent because they are consecutive in our y − z walk.

Having checked all three properties, we know that ↭ is an equivalence relation.

Using Lemma 3.1 and the properties of equivalence relations, we know that we can partition
V (G) into equivaelnce classes of ↭. These equivalence classes are sets C1, C2, . . . , Ck satisfying
three properties:

1. They are pairwise disjoint: if i ̸= j, then Ci ∩ Cj = ∅.

2. Together, they include all the vertices: C1 ∪ C2 ∪ · · · ∪ Ck = V (G).

3. For x, y ∈ V (G), we have x ↭ y if and only if there is a single Ci such that x ∈ Ci and
y ∈ Ci.

Property 3 of an equivalence class is exactly the property we need to know that Ci is a connected
component of G. We conclude:

Theorem 3.2. The vertices of any graph can be partitioned into connected components.

When the graph is connected, and there is a walk from any vertex to any other vertex, then
V (G) itself is a single connected component.

This is not just interesting for answering questions about walks! Because there are no edges
between different connected components, they basically do not interact with each other as far
as graph properties are concerned. A lot of the time, if we’re asking a question about graphs,
we can work with each connected component separately.

Looking back at the examples in the first chapter, suppose for example that a country’s land is
separated into two islands, with each island made up of several regions. The two islands will be
connected components in the adjacency graph of the country’s regions. If we want to find a way
to color the map of this country so that adjacent regions get different colors, we get separate
coloring problems for each island.

Or suppose we’re looking for a largest independent set: a set of vertices with no edges
between them. (This came up in the tiling problem from Chapter 1.) We can just find a largest
independent set inside each connected component, then take their union.

Question: Suppose we want to find a largest clique in a graph: a set of vertices
in which every pair is adjacent. How can we take advantage of knowing
the connected components of the graph?

Answer: A clique cannot contain two vertices in different connected components.
So we can first solve the problem for each connected component, finding
a largest clique in each one. Then, take whichever clique is largest among
the ones we found.
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3.4 Closed walks and cycles

Once we know where we can start and end a walk, we can start looking at ways that a walk
can return to where it started. For this, the following definition is a starting point:

Definition 3.5. A walk is closed if it starts and ends at the same vertex.

Closed walks with no further conditions imposed on them are not very notable, because they’re
very easy to come by. For example, we can take an arbitrary walk and follow it up with the
reverse of that walk, tracing all our steps back to the start. This is a closed walk that is not
very satisfying to find, because it reveals nothing about the structure of our graph.

(Why then, do we make the definition at all? One reason is that it is a building block for
later definitions, but another reason is that the matrix techniques in Appendix C make walks
and closed walks especially easy to count. So we had better have a name for what it is we’re
counting!)

We’d like to make a definition of a closed walk that is interesting to come by: that heads out
and comes back by a different route. The most restrictive and most useful such definition is
that of a cycle:

Definition 3.6. A closed walk x0, x1, x2, . . . , xk is a cycle if k ≥ 3, and all of the vertices x0
through xk−1 are distinct (but xk = x0, because the walk is closed).

Associated to the cycle x0, x1, x2, . . . , xk with xk = x0 is a subgraph isomorphic to Ck: the
subgraph which has vertex set {x0, x1, x2, . . . , xk−1} and edge set {x0x1, x1x2, . . . , xk−1xk}. It
is in part to make this connection work that we require k ≥ 3 in the definition of a cycle: the
closed walks with k = 1 or k = 2 would not really be “cycle-like” objects. Just as with paths,
we will often flip back and forth between two ways of thinking about a cycle: as a sequence of
vertices, and as a subgraph.

(This seems very handwavy and imprecise, so it’s important to be very clear when we are doing
this. On the other hand, it is also very rewarding to be able to look at the same object from
two different points of view.)

Question: If we think of a path as a subgraph instead of a walk, we lose track of
the direction: which endpoint is the start and which is the end. What
do we lose track of when we think of a cycle as a subgraph?

Answer: Two things. First, in the closed walk definition of a cycle, there is still
a direction: we go from x0 to x1, not vice versa. This is lost when we
switch to the subgraph. Second, the vertex x0 which is both the start
and the end plays a special role in the closed walk definition; in the
subgraph, all vertices are treated equally.
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(c) A Hamilton cycle in Q3

Figure 3.3: The cube graph and some cycles in it

In Figure 3.1, the closed walk

∪ ∪ ∪, ∪ ∩ ∩, ∩ ∪ ∩, ∩ ∩ ∪, ∪ ∪ ∪

is a cycle, but perhaps at this point in the chapter we need a fresh example.

Suppose that instead of flipping two cups at a time in the three cups puzzle, we could flip
any one cup; the puzzle is no longer challenging in any way, but it is more interesting as a
mathematical object. So we abandon cups; instead of using the symbols ∪ and ∩, we switch to
the symbols 0 and 1, so that the vertices are 3-bit sequences. The resulting graph is shown in
Figure 3.3a. It is called the cube graph because, in addition to the combinatorial description,
it has a geometric one: the corners and (geometric) edges of the unit cube [0, 1]3 are exactly
the vertices and edges of the cube graph.

We use the notation Q3 for the cube graph because, later on, we will generalize this graph to
the hypercube graph Qn, with a geometric interpretation in n dimensions.

Question: In terms of n, how many vertices does Qn have?

Answer: 2n vertices: there are 2n sequences of n bits, because there are 2 choices
(0 or 1) for each bit.

In the cube graph, we also have 4-vertex cycles such as 000, 001, 011, 010, 000. We also have
6-vertex cycles such as the one shown in Figure 3.3b, and even cycles through all 8 vertices
such as the one shown in Figure 3.3c. (A cycle through all the vertices of a graph is called a
spanning cycle or Hamilton cycle: viewed as a subgraph, it really is a spanning subgraph,
so this is in line with our past definitions.)

3.5 Lengths of walks

Finally, once we know that an x−y walk exists, we ask: how many steps does it need to have?

Definition 3.7. A walk x0, x1, x2, . . . , xk has length k.
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This is one of two possible definitions: it counts the edges used by the walk, but we could also
have counted the vertices. We choose to count the edges because it makes more sense: the walk
that goes nowhere has length 0, and in an application where the walk is a sequence of steps
taken (such as in a puzzle), the length of a walk is the number of steps required.

One slightly strange consequence is that while the cycle graph Cn corresponds to a cycle of
length n, but the path graph Pn corresponds to a path of length n − 1. For this reason, some
authors define Pn to be a path with n+1 vertices and n edges. In my opinion, this causes more
problems than it solves: I am happier if graph families like Kn, Cn, Pn and others are indexed
by the number of vertices they have, whenever possible.

The notion of length is a useful one to have before we prove the following theorem, which tells
us when paths exist in a graph:

Theorem 3.3. Let x, y be two vertices of a graph G. If there is an x− y walk in G, then there
is a x − y path in G, as well. Moreover, a shortest x − y walk (one with the smallest possible
length) is always a path.

Question: Why do mathematicians say “a shortest walk” when it would sound
more natural to say “the shortest walk”?

Answer: Referring to “the shortest x− y walk” could be misinterpreted to mean
that there is only one x − y walk which is the shortest. This is often
false.

Proof of Theorem 3.3. Because we are discussing an object that minimizes something (length,
in this case), it’s natural to use the extremal principle. Assuming x− y walks exist in G, let

u0, u1, u2, . . . , uk

(with u0 = x and uk = y) be an x− y walk of minimum length. We will show that this walk is
actually a path, which proves both halves of the theorem.

Suppose for the sake of contradiction that the walk is not a path; in that case, the vertices are
not all distinct, which means we can pick two positions i and j with i < j such that ui = uj .
But now, consider the sequence

u0, u1, . . . , ui−1, ui, uj+1, . . . , uk

in which we skip vertices ui+1, ui+2, . . . , uj . This is still an x− y walk! It still starts at x, still
ends at y, and every two consecutive vertices are adjacent because they were also adjacent in
the original walk. (This is not obvious for the pair {ui, uj+1}, but because ui = uj , it is the
same as the pair {uj , uj+1}.)

So we’ve found an x− y walk which has length k− (j− i): strictly less than k. This contradicts
our assumption that we took an x−y walk of minimum length. So a shortest x−y walk cannot
have repeated vertices: it must be a path.
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Figure 3.4: Finding distances in the cube graph

3.6 Distances

Having proven Theorem 3.3, we can now define distances in a graph.

Definition 3.8. If x and y are vertices in a graph G, the distance between x and y (some-
times written dG(x, y), or d(x, y) if the graph is clear from context) is the length of the shortest
x− y walk, which we now know is also the length of the shortest x− y path.

If x and y are in different connected components, then there is no such walk, and we sometimes
say that d(x, y) = ∞ in that case.

For example, in Figure 3.4d, all vertices of the cube graph Q3 have been labeled with their
distance to the bottom left vertex (which we called 000 in Figure 3.3a). Take note of the 0 on
the bottom left vertex. This is there because vertex 000 has distance 0 to itself, as measured
by the length-0 path starting and immediately ending at 000.

What’s going on in the other parts of Figure 3.4? These are illustrations of the steps of an
algorithm by which all the distances from a single vertex may be computed.

Let x be that starting vertex, in an arbitrary graph G. We begin by knowing only one distance
in G: the distance d(x, x) = 0. We will consider that starting point to be “Step 0” of the
algorithm; it is shown for G = Q3 in Figure 3.4a.

In Step 1, we take all the neighbors of x; for each vertex y adjacent to x, we set d(x, y) = 1.
This is the correct distance, because the walk x, y has length 1, and there cannot be a length-0
walk from x to any vertex other than x. Moreover, all length-1 walks from x end at a neighbor
from x, so we’ve found all the vertices at distance 1; this will be important later. The end result
of Step 1 when G = Q3 is shown in Figure 3.4c.

From then on, we repeat the following procedure, of which our Step 1 is a special case. In Step
k, we consider every vertex y for which d(x, y) = k − 1, and every neighbor z of such a vertex
for which d(x, z) is still unknown; we set d(x, z) = k. Why is this correct? There’s two parts to
the verification:

1. First of all, there is an x − z walk of length k. To find it, take the x − y walk of length
k − 1 (which must exist, assuming the previous steps of our algorithm were correct) and
append vertex z to the end of that sequence.
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2. Second, there are no shorter x − z walks; that’s because, at step k − 1, we found all the
vertices at distance at most k − 1 from x.

Now let’s re-confirm point 2 above for step k, so we can use it in future steps. Suppose that
d(x, z) ≤ k; then for some j ≤ k, there is a walk x0, x1, . . . , xj with x0 = x and xj = z. The
walk x0, x1, . . . , xj−1 has length j − 1, so d(x, xj−1) ≤ j − 1, and we’ve found vertex xj−1 at
step j − 1 or earlier: before step k. Finally, in the next step after we computed d(x, xj−1), we
would have considered z (a neighbor of xj−1), and determined d(x, z).

In the cube graph Q3, the result of Step 2 is shown in Figure 3.4c and the result of Step 3 is
shown in Figure 3.4d. Here, if we were to try to do a Step 4, we would accomplish nothing: all
neighbors of the vertex labeled with 3 already have known distances. At this point, we stop.

This stopping condition is guaranteed to happen in an n-vertex graph by Step n− 1 or earlier:
if we were to do more steps than that while computing a new distance at every step, we’d run
out of distances to compute. (This is an important thing to check about every algorithm—that
it halts!) After the stopping condition is reached, let S be the set of all vertices whose distances
to x we’ve computed. There is a walk between any two vertices in S, because all of them have
a walk to x; however, no vertex y ∈ S has a neighbor z /∈ S, because we would have computed
d(x, z) a step after computing d(x, y) if not earlier.

Therefore S is the connected component of G containing x. If G is connected, then we’ve
computed all distances, and we’re done. Otherwise, we can set d(x, y) to ∞ for all y /∈ S.

Question: Is there an n-vertex graph for which this algorithm doesn’t stop before
Step n− 1?

Answer: Yes: the path graph Pn, if we start measuring distances from one end
of the path graph. In this graph, it takes n−1 steps to go from one end
to the other.

This distance-finding algorithm is a special instance of breadth-first search, or BFS for
short. It is a way of exploring the graph to eventually visit all the vertices in a connected
component. It’s called “breadth-first” because it tries to go outward from the starting vertex
in every direction at once: first a little bit, then a little bit more, and so on.

In the distance-finding algorithm, we used a breadth-first search to compute distances, but this
algorithm can be used for other purposes as well; Edward Moore, one of the first people to
discover it, used it to find the shortest path through a maze [5]. Later on in the book, we will
see other problems that can be solved using a similar algorithm.

3.7 Practice problems

1. Let G be the graph whose vertices are the numbers 1, . . . , 15, with an edge between a and
b if |a− b| = 4 or if |a− b| = 10. (For example, vertex 11 is adjacent to vertices 7 and 15,
because |11− 7| = |11− 15| = 4, as well as to vertex 1, because |11− 1| = 10.

a) Draw a diagram of G.
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b) What are the connected components of G?

2. The graph shown below is known as the Petersen graph.

a) The Petersen graph contains cycles of four different lengths between 3 and 10. Which
lengths?

b) Find a path of length 10 in the Petersen graph.

c) Choose any vertex, and use the distance-finding algorithm to label all vertices in the
Petersen graph with the distance from the vertex you chose.

3. How can we find the shortest path through a maze, as Edward Moore did, by using
breadth-first search on a graph? Try it out on the maze below:

Start

End

4. Prove that the distance between vertices in a connected graph satisfies the following
properties, for all vertices x, y, and sometimes z:

a) d(x, y) = 0 if and only if x = y.

b) d(x, y) = d(y, x).

c) d(x, z) ≤ d(x, y) + d(y, z).

Some of these properties are easier than others, but I am listing them for two reasons.
First of all, in some way, they correspond to the proof of Lemma 3.1. Second, they are
the three properties that make a connected graph a metric space with metric d; this is
not something I will cover in this textbook, but it is interesting in a context outside graph
theory.

5. If a graph has 6 vertices, what are the possible values its diameter can have? For each of
those values, give an example.

6. To really understand the proof of Lemma 3.1, it helps to try to generalize it and see what
works and what doesn’t. Take the following two relations on the vertices of a graph G:

• v ⌢ w if there is a v − w walk of odd length.

• v ⌣ w if there is a v − w walk of even length.

For one of these, we can copy the proof of Lemma 3.1 almost word-for-word and prove
that it is also an equivalence relation. For the other one, this will not work: there are two
places where the proof will fail. Find those places!
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4 The degree of a vertex

The purpose of this chapter

After this chapter, I have a whole part of the textbook devoted to the degrees of vertices and
the properties of graphs that we can deduce from them. Originally, I had placed this chapter at
the beginning of that part, but after writing more of the book, I realized that an introduction
to the basics of vertex degrees is too fundamental: the ideas in this chapter will appear over
and over again.

To reflect this, I’ve moved this chapter to be the end of the first part of the textbook. After
finishing it, you should feel a bit more free to skip around this book depending on what you’re
interested in. You may still need to read each part of the textbook in order, and I assume the
knowledge of some things that are covered in previous parts, but there’s less interdependence.

The first half of this chapter consists of computational problems that I find fairly light-hearted;
the second half contains some more serious proofs, and it may be a spike in difficulty. If you’re
new to writing proofs in graph theory, it is important to study the proof of Lemma 4.5 until
you are comfortable with it; it is a good example of how (and why) to induct on the number of
vertices in a graph.

4.1 The hypercube graphs

Before we begin discussing vertex degrees, let me introduce a new family of graphs to you:
the hypercube graphs. The family of hypercube graphs generalizes the cube graph previously
mentioned in Chapter 3:

Definition 4.1. The n-dimensional hypercube graph Qn has:

• Vertex set V (Qn) = {0, 1}n, which we will denote with n-bit strings b1b2 . . . bn. For exam-
ple, V (Q2) = {00, 01, 10, 11}.

• An edge between every pair of vertices that differ only in one position. For example, in
Q3, vertex 010 is adjacent to vertices 110, 000, and 011.

The 3-dimensional hypercube graph Q3 is also known as the cube graph.

Question: In Q4, what are the neighbors of vertex 0101?

Answer: Vertices 1101, 0001, 0111, and 0100: we get 1101 by flipping the first
bit, 0001 by flipping the second bit, 0111 by flipping the third bit, and
0100 by flipping the fourth bit.
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(a) Q2 (b) Q3 (c) Q4

Figure 4.1: Three hypercube graphs of three different dimensions

In Appendix B, I give an alternate, recursive definition of Qn: useful when proving any of its
properties by induction on n.

Figure 4.1 shows three examples of hypercube graphs: Q2, Q3, and Q4. You may notice that
Q2 resembles a 2-dimensional square, and Q3 resembles a 3-dimensional cube; in general, Qn

is the graph that describes the geometrical structure of an n-dimensional hypercube. However,
Qn also has a variety of applications that have nothing to do with geometry:

• For computer scientists, it is the graph of n-bit sequences with adjacency defined by
flipping bits. When is that kind of adjacency useful? For example, when designing error-
correcting codes, which need to detect accidental bit flips. The code words in an error
correcting code are vertices of Qn all at a high distance from each other.

• We can also think of the vertices of Qn as subsets of the set {1, 2, . . . , n}, where an n-bit
string b1b2 . . . bn corresponds to the subset B = {i : bi = 1}. With this interpretation, the
graph theory behind Qn can tell us about the combinatorics of set families.

• In graph theory, Qn can be useful as a simple construction of a graph with many vertices
and lots of symmetry; additionally, despite having relatively few edges for how many
vertices it has, none of the vertices are very far apart.

But “relatively few edges for how many vertices it has” is a vague statement. How many vertices
does Qn have, and how many edges?

To count the vertices, it’s enough to think about the number of ways to choose an element
b1b2 . . . bn ∈ Qn: for each bit bi, there are 2 choices, and each choice can be made independently
of the others, so there are 2n choices overall.

To find the number of edges in Qn, we will first develop a bit of the theory of vertex degrees,
which will make the problem much easier.

4.2 The Handshake Lemma

Let’s begin with the main definition:

Definition 4.2. The degree of a vertex x in a graph G is the number of edges incident on x
(having x as an endpoint). We write degG(x) for the degree of vertex x in G, or just deg(x) if
the graph is clear from context.
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1 0 3 2

Figure 4.2: An 8-vertex graph labeled with the degrees of its vertices

Figure 4.2 shows an 8-vertex graph with vertices labeled according to their degree.

Question: In a graph with 8 vertices, what is the largest number that could be the
degree of a vertex?

Answer: 7: if a vertex x is adjacent to every other vertex, then deg(x) = 7. In
general, in an n-vertex graph, the largest degree possible is n− 1.

There is a lot of associated terminology.

Definition 4.3. A vertex with degree 0 is called an isolated vertex, and a vertex with degree 1
is sometimes called a leaf.

Isolated vertices are interesting because they are the smallest possible connected component in
a graph. Leaves are less obviously notable; we will (appropriately) find out what’s interesting
about them when we study tree graphs.

Definition 4.4. The maximum degree of a graph G, denoted ∆(G), is the largest degree of
any vertex; the minimum degree of a graph G, denoted δ(G), is the smallest degree of any
vertex.

The notation ∆(G) and δ(G) is only the beginning of a general trend to use Greek letters for
numerical properties of graphs; for the important properties, these letters are mostly standard.
(If you are unfamiliar with the Greek alphabet, ∆ and δ are an uppercase and lowercase “delta”,
respectively; this is a “d” for “degree”, uppercase for maximum and lowercase for minimum.
It’s not entirely random.)

The Handshake Lemma, or degree sum formula, is the first tool that gives degrees any sort
of purpose. In my opinion, it is one of the main results from graph theory that mathematicians
from all fields should know: not just for its statement, but to use as a way of thinking about
graphs. (The other result that I’d put in that category is Hall’s theorem, which we’ll prove in
Chapter 14.)

Lemma 4.1 (Handshake Lemma). In any graph G, the vertex degrees add up to twice the
number of edges: ∑

v∈V (G)

degG(v) = 2|E(G)|.
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Proof. Many proofs exist; for the sake of practice, let’s do a proof by induction. We will prove
that for any graph with m edges, the sum of degrees is 2m, by induction on m.

The base case is m = 0. Here, we have a graph with no edges. No matter how many vertices
we have, their degrees are all 0, the sum of the degrees is 0, and 2m is also 0.

Assume that the degree sum formula holds for all (m− 1)-edge graphs. Let G be a graph with
m ≥ 1 edges, and let xy be any edge of G. We can apply the inductive hypothesis to G − xy
(the graph we get by deleting edge xy from G), a graph with m− 1 edges.

What is the relationship between the degrees of G and the degrees of G − xy? Both x and y
have one extra incident edge in G they don’t have in G− xy: edge xy itself. So

degG(x) = 1 + degG−xy(x) and degG(y) = 1 + degG−xy(y).

For any other vertex v, G− xy and G have the same number of edges, so we have

degG(v) = degG−xy(v).

Also, G− xy and G have the same set of vertices. So if we add up the vertex degrees in G− xy
and G, the result is that ∑

v∈V (G)

degG(v) = 2 +
∑

v∈V (G−xy)

degG−xy(v).

Applying the inductive hypothesis, we get that the degree sum in G − xy is 2(m − 1), so the
degree sum in G is 2(m− 1) + 2 = 2m.

By induction, the degree sum formula holds for all graphs.

Using Lemma 4.1, we can immediately answer our earlier question: how many edges does the
hypercube Qn have? There are 2n vertices in Qn, and each of them has n neighbors: every bit
sequence b1b2 . . . bn has n places in which a bit an be toggled. So the sum of degrees is n · 2n,
and therefore the number of edges is n · 2n−1.

Here are some other questions we can answer quickly using the Handshake Lemma:

Problem 4.1. In particular, Q3 has 8 vertices of degree 3. Can we have a 7-vertex graph where
all the vertices have degree 3?

Answer to Problem 4.1. No: then the degree sum would be 7 · 3 = 21, so there would be 10.5
edges, which is impossible.

Problem 4.2. A soccer ball has 12 black pentagonal panels (and some white hexagonal panels
I’m too lazy to count). Panels are stitched along their edges, and meet at corners; at each
corner, a pentagon and two hexagons meet. How many edges are there where two panels meet?

Answer to Problem 4.2. Each black pentagon has 5 corners, which will be the 12·5 = 60 vertices
of our graph; the edges will be the edges where panels meet. Here, each vertex has degree 3, so
the sum of degrees is 60 · 3 = 180, and there are 90 edges.

(Some slightly fancier logic can convince us that there are 20 hexagons; see the practice problems
at the end of this chapter.)
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Figure 4.3: An full binary tree with 8 vertices; the leaves are shaded.

Problem 4.3. Suppose you have a graph G with 9 vertices and 20 edges. What can the minimum
degree δ(G) of this graph be?

Answer to Problem 4.3. Since the sum of the degrees is 2 · 20 = 40, the average of the degrees
is 40

9 ≈ 4.44. So the minimum degree can be at most 4: if every vertex had degree 5 or more,
then the sum of degrees would be at least 5 · 9 = 45. We can find 9-vertex, 20-edge graphs with
a minimum degree of each of 0, 1, 2, 3, or 4; try it yourself!

Problem 4.4. In computer science, a full binary tree is a graph where every vertex is adjacent
to up to 3 vertices: a parent and up to 2 children. Every vertex except one (the root) has a parent;
every vertex has either 0 children or 2 children. (The parent-child relationship is symmetric.)
Figure 4.3 shows a 9-vertex full binary tree; 5 of its vertices are leaves, with 0 children. In a
99-vertex full binary tree, how many leaves would there be?

Answer to Problem 4.4. Suppose there are k leaves, which each have degree 1; there is 1 root,
with degree 2, leaving 99− k − 1 vertices with degree 3 (a parent and 2 children). So the total
degree is k + 2 + 3(99− k − 1) or 3 · 99− 2k − 1.

By the Handshake Lemma, this is twice the number of edges. But we can count the edges
differently! Each edge is between a parent and a child; all 98 vertices except the root have a
parent, so there are 98 edges. Setting 3 · 99 − 2k − 1 equal to 2 · 98 and solving for k, we get
k = 50: there must be 50 leaves.

We can generalize the answer to Problem 4.1. Let’s say that a vertex v is even if deg(v) is an
even number, and odd if deg(v) is an odd number. Then:

Corollary 4.2. Every graph G must have an even number of odd vertices (possibly 0).

Proof. What is the parity of the sum of degrees of G: is it odd or even?

One way to answer that question is simply to add up all the degrees. Starting from 0 (an even
number), when we add an even degree to the total, it does not change the parity; when we add
an odd degree to the total, it flips the parity. So if the number of odd vertices is even, the
parity is flipped an even number of times, and ends at an even number; if the number of odd
vertices is odd, the parity is flipped an odd number of times, and ends at an odd number.

Another way to answer the question, however, is to use the Handshake Lemma. The sum of
degrees of G is definitely an even number, because it’s twice the number of edges!
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For the two answers to agree, as we know they must, the number of odd vertices must be
even.

4.3 Degrees and connectedness

Here’s another way we can use the minimum degree of a graph:

Proposition 4.3. Let G be a graph with n vertices whose minimum degree δ(G) is at least n−1
2 .

Then G is connected.

Proof. We want to show that given any two vertices x and y, G must have an x− y path.

This is definitely true if xy is an edge of G: in this case, the sequence x, y is an x− y path. So
let’s suppose that xy /∈ E(G).

There are n − 2 vertices in G other than x and x. Of these n − 2 vertices, at least n−1
2 are

adjacent to x, and at least n−1
2 are adjacent to y. Together, n−1

2 + n−1
2 adds up to more than

n− 2, so there must be some overlap! That overlap is a vertex z adjacent to both x and y.

In this case, x, z, y is an x− y path, completing our proof.

(Actually, we’ve shown more: we’ve shown that for any two vertices x, y ∈ V (G), the distance
d(x, y) is at most 2. We say that G has diameter at most 2. This term is defined by analogy
to a circle, in which the diameter is the longest distance between any two points on the circle.
For a graph, the diameter is the longest distance between any two vertices of the graph.)

Proposition 4.3 is a very common type of theorem to prove; it is, in some sense, our first
glimpse of extremal graph theory. Extremal graph theory is the sub-discipline of graph theory
that explores the relationships between possible values of different graph properties. Here are
a couple of ways this can go:

• Suppose we consider two numerical invariants of graphs: x(G) and y(G). It is very rare
that knowing x(G) will tell us y(G), if we’ve bothered to define both numbers at all.
However, maybe knowing x(G) will give us a range of possible values of y(G): there is a
region in the xy-plane where the points (x(G), y(G)) can go.

To describe that region, it’s natural to explore its boundaries. That’s why extremal graph
theory is “extremal”: it studies the extreme (highest or lowest) values that one invariant
can have, based on another. We might describe the relationship between the two invariants
by an inequality: for example, the inequality δ(G) ≤ ∆(G) is a rather silly statement of
extremal graph theory.

• Suppose we consider a numerical invariant x(G) and a property P that a graph G either
has or does not have. Then the “extremal” question we can ask is this: among graphs
that have P , what is the range of possible values of x(G)? What about graphs that do
not have P? Using this, we might be able to deduce whether a graph G has property P
or not, based on the value of x(G).
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Proposition 4.3 is an example of the second type of statement, describing the relationship
between minimum degree and connectedness. It is very common in extremal graph theory to
ask: what is a lower bound δ(G) ≥ that will guarantee that G has a certain property?

Of course, we have to try to find a good lower bound. It is much easier to prove the statement,
“If an n-vertex graph G has minimum degree n− 1, then G is connected,” because the only n-
vertex graph G with minimum degree n−1 is the complete graph Kn. However, Proposition 4.3
is stronger: it applies to more graphs. Is it as strong as possible?

To answer that question, we look for an extremal example. If we can find a graph G which just
barely fails the condition δ(G) ≥ n−1

2 , but is not connected, then we know that Proposition 4.3
cannot be improved any further: that graph G is the limit. (Ideally, we’d find such a graph for
many possible values of n, to give an example that applies to all situations.)

There is such an example. Suppose n is even, and G has two components which are complete
graphs with n

2 vertices each. Then each vertex is adjacent to the n
2 − 1 other vertices in its

component, and δ(G) = n
2 − 1, yet G is not connected.

Question: Suppose that n is odd: n = 2k + 1 for some k. What is the largest
possible degree in a graph G which is not connected?

Answer: It is k−1, which we can achieve when one component of G is a k-vertex
complete graph, and the other is a (k + 1)-vertex complete graph.

Question: How do we know we can’t do better than this example?

Answer: The next integer after k − 1 is k, which is exactly equal to n−1
2 : at this

point, by Proposition 4.3, we know that the graph must be connected.

4.4 Degrees and cycles

The following theorem, and Corollary 4.6 in the next section, will both be very useful to us
multiple times in future chapters. In the meantime, they will show a few other ways we can use
vertex degrees in proofs.

Theorem 4.4. Every graph G whose minimum degree δ(G) is at least 2 contains a cycle.

The intuition for this theorem is as follows. Just start at any vertex of G and walk around,
taking care not to leave a vertex the way you entered it. Eventually you will run into a vertex
you’ve seen before. The first time that happens, your trajectory from that vertex and back
forms a cycle.

Whenever we have an intuition of the form “keep doing this thing until it does what we want”,
this suggests a proof with the extremal principle. Just take (by the extremal principle) the
situation in “this thing” has been done for as long as it possibly can without “doing what we
want”. Then it is forced to “do what we want” in the very next step.

In this particular case, if we walk around for as long as we possibly can without revisiting a
vertex, what we’re getting is a very long path. This suggests the following proof:
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Proof. Let x0, x1, x2, . . . , xk be a longest path in G.

We know δ(G) ≥ 2 and therefore in particular deg(x0) ≥ 2. Is it possible that x0 has a neighbor
y which is not one of x1, . . . , xk? It’s not! In that case, y, x0, x1, . . . , xk would be a longer path.

So x0 has at least two neighbors, which are all in the set {x1, x2, . . . , xk}. One of x0’s neighbors
is x1: the next vertex on the path. This doesn’t help us. But there must be another vertex xi
with i ≥ 2 which is adjacent to x0.

Then (x0, x1, . . . , xi, x1) is the cycle we wanted.

Question: How do we know that a longest path in G exists?

Answer: There’s an upper limit to the length of a path: in an n-vertex graph,
there can be no path of length n or larger, because such a path would
need to contain n+ 1 different vertices.

Question: Why does this matter for our proof?

Answer: If we begin our proof by saying, “Let x0, x1, x2, . . . , xk be a longest path
in G,” then it had better be the case that such an object exists. We
could not begin a proof by saying, “Let x0, x1, x2, . . . , xk be a longest
walk in G,” because there are often arbitrarily long walks.

4.5 Average degree

Even if you have lots and lots and lots of edges, your minimum degree can be very small. For
example, a 100-vertex graph might consist of a 99-vertex complete graph and a single isolated
vertex. This has 4851 edges, which is close to the maximum number of edges a 100-vertex graph
can have: 4950. And yet the minimum degree is 0, and we can’t apply any nice results like
Theorem 4.4 to this graph.

The following lemma partially solves this problem, and is very commonly used in extremal
graph theory. It was first proved by Pál Erdős in 1964 [3] to solve a problem relating average
degre to the existence of certain subgraphs, though special cases of it were used even earlier.

Lemma 4.5. Let G be a graph with average degree at least d, where d is a positive integer.
Then G contains a subgraph H with δ(H) > d

2 .

This could be done using another application of the extremal principle: if you pick a subgraph
H with the highest average degree, then it turns out to work. Rather than do this, we will use
induction, so that we get to practice induction. (Take note of how we structure this proof to
avoid the “induction trap”!)
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Proof. We induct on n, the number of vertices in G.

When n ≤ d, the theorem “holds trivially”: that is, when n ≤ d, the highest possible degree in
G is d− 1, so G cannot have average degree d or more to begin with! We could use that as our
base case, but it’s a bit more satisfying to use n = d+ 1.

In this case, the highest possible degree in the graph is d. The average degree can only be this
high if every vertex has degree d: if G = Kd+1. In this case, G itself is the subgraph H we’re
looking for. This base case also holds.

Either way, suppose that the theorem holds for all (n− 1)-vertex graphs with average degree at
least d. Let G be an n-vertex graph with average degree at least d.

At this point, let’s say something about average degree. If G has vertices x1, x2, . . . , xn, then
the average of the degrees is

deg(x1) + deg(x2) + · · ·+ deg(xn)

n
=

2|E(G)|
n

,

by the Handshake Lemma. This equation tells us that the average degree of G is 1
2n times

the number of edges in G. In particular, the statement “G has average degree at least d” is
equivalent to the statement “G has at least 1

2nd edges”.

We’re assuming G has average degree at least d, so we’re assuming that G has at least 1
2nd

edges. Also, if δ(G) > d
2 , then we are already done: we were looking for a subgraph with this

minimum degree, and G itself can be that subgraph! So we can add on a further assumption
for free: that G has a vertex x with deg(x) ≤ d

2 .

In that case, let G′ = G − x: the graph obtained from G by deleting x. We know that G′ has
n − 1 vertices and at least 1

2nd −
d
2 edges: we started with at least 1

2nd edges, and we lost at

most d
2 of them from deleting x. This simplifies to 1

2(n−1)d, so G′ has at least 1
2(n−1)d edges,

which means G′ has average degree at least d, too!

By applying the inductive hypothesis to G′, we learn that G′ has a subgraph H with δ(H) > d
2 .

Since H is a subgraph of G′, and G′ is a subgraph of G, we have found the subgraph of G we
wanted.

By induction, the theorem holds for graphs with any number of vertices.

Using Lemma 4.5, we can convert minimum-degree results to average-degree results. For ex-
ample, we can use Lemma 4.5 to turn Theorem 4.4 into a result about average degree—or,
equivalently, about the number of edges. This will be very valuable to us.

Corollary 4.6. If G has n vertices and at least n edges, then G contains a cycle.

Proof. If G has n vertices and at least n edges, it has average degree at least d = 2. By
Lemma 4.5, G has a subgraph H with δ(H) > d

2 = 1. If δ(H) > 1, then δ(H) ≥ 2, so by
Theorem 4.4, H contains a cycle. This is also a cycle in G.
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Question: Is the lower bound “at least n edges” in Corollary 4.6 the best lower
bound possible?

Answer: Yes: a graph with n vertices and n− 1 edges does not need to contain
a cycle. For example, the graph Pn has n vertices, n− 1 edges, and no
cycles.

4.6 Practice problems

1. Suppose that G is a graph with 5 vertices and 7 edges. For which pairs (a, b) is it possible
that δ(G) = a and ∆(G) = b?

For the cases where it is possible, give an example. For the cases where it is not possible,
explain why not.

2. The five Platonic solids are:

• The tetrahedron, which has 4 vertices and 4 triangular faces, with 3 faces meeting
at every corner.

• The cube (or hexahedron), which has 8 vertices and 6 square faces, with 3 faces
meeting at every corner.

• The octahedron, which has 6 vertices and 8 triangular faces, with 4 faces meeting at
every corner.

• The dodecahedron, which has 20 vertices and 12 pentagonal faces, with 3 faces
meeting at every corner.

• The icosahedron, which has 12 vertices and 20 triangular faces, with 5 faces meeting
at every corner.

In each case, find the number of edges where two faces meet. (In Chapter 23, we will
explore further constraints on the Platonic solids.)

3. Let’s return to the soccer ball in Problem 4.2. Let the soccer ball have 12 pentagons and
x hexagons. Each pentagon borders 5 hexagons; each hexagon borders 3 pentagons and
3 other hexagons.

Consider a different graph describing the soccer ball: its vertices are the pentagonal and
hexagonal panels, and two vertices are adjacent whenever the panels are stitched together.

a) Use the Handshake Lemma to compute the number of edges in this graph.

b) Use the Handshake Lemma on a subgraph of this graph to find the number of edges
corresponding to hexagon-to-hexagon boundaries.

c) Solve for x.
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4. We deduced Corollary 4.6 on the existence of cycles by combining Theorem 4.4 and
Lemma 4.5.

In a similar way, we can combine Proposition 4.3 on connectedness and Lemma 4.5 to
obtain a result about the minimum average degree (or, equivalently, the minimum number
of edges) to guarantee that a graph is connected.

a) What minimum number of edges do you get in this way?

b) Is it the best possible statement of its type? Try to construct an n-vertex graph with
as many edges as possible that is not connected.

c) Without using Lemma 4.5, prove that when n ≥ 3, every n-vertex graph with at
least

(
n
2

)
− (n− 2) edges is connected.

(You should think of this bound in the following way: every n-vertex graph which is
missing at most n− 2 edges is connected.)

5. An open problem called Conway’s 99-graph problem is to determine whether there is
a 99-vertex graph with the following properties:

• Every two adjacent vertices have exactly one common neighbor;

• Every two non-adjacent vertices have exactly two common neighbors.

If such a graph exists, then every vertex in it must have the same degree, d. What is d?

(I am not asking you to find the graph. John Conway offered a $1000 reward [2] for a
solution to the problem! That gives you an idea of how hard that would be.)
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